NASSLLI Workshop New type-theoretic tools in natural language semantics Thursday 28 June 2018, 3PM CMU

Scope in Natural Language: Why Monads aren't Enough

Chris Barker

New York University, Department of Linguistics

Version of June 28, 2018.

Plan

- Dependent types, applicatives, monads, what are we doing?
- Scope in Natural Language (new: algebraic presentation)
 - type operators
 - decidability
- Empricial challenges
 - WH question formation, relative clause formation
 - Recursive scope: *some of the same*, Andrews Amalgams

What are we doing?

- What algebraic structure best characterizes which natural language phenomena?
- Is the logic of presupposition intuitionistic or classical?
- Does intenstionality call for a monad or a comonad?
- Do we need monads, or are applicatives what we really care about?

Type operator	Plain Fancy		Application
Writer monad	A	$A \times B$	supplementals
Reader monad	A	$B\toA$	simple binding
State monad	A	$B \rightarrow (A \times B)$	binding
Continuation monad	А	$(A \rightarrow B) \rightarrow B$	simple scope
Continuations	А	$(A \rightarrow B) \rightarrow C$	scope

Draw circles

Scope

- (1) Ann saw Bill.
- (2) Ann saw everyone. $everyone(\lambda x.saw ann x)$
- (3) Someone saw everyone.
- (4) Ann saw *who*?
- (5) Who did Ann see __?
- (6) That's the book [the author of which] I met last night.
- (7) Ann ate something, but I don't know what she ate.
- (8) Ann ate something, but I don't know what ___. sluice
- (9) Ann ate [I don't know what __] yesterday.

Where we're headed on the Barendregt cube

- Barendregt 1991 J. of Functional Programming 1.2:125–154
- Polymorphism: terms depend on types:

 $((\Lambda A\lambda x:A.x):(\forall A.A \rightarrow A))[Int] = \lambda x:Int.x$

- Dependent types: types depend on terms
- Type operators: types depend on types: $C_t e = (e \rightarrow t) \rightarrow t$

Lambek's type logic NL: the logic of external merge

Substructural: without Exchange, ' \supset ' splits into ' \setminus ' and '/':

- Atomic formulas: $\mathcal{A}t = \mathsf{DP} \,|\, \mathsf{S} \,|\, \mathsf{N} \,|\, \mathsf{Q}$
- Formulas: $\mathcal{F} = \mathcal{A}t \,|\, \mathcal{F} \setminus \mathcal{F} \,|\, \mathcal{F} \bullet \mathcal{F}$
- Sequents: $\mathcal{F} \vdash \mathcal{F}$
- Axiom schema: $A \vdash A$
- Logical rules:

 $(\mathrm{residuation}) \qquad B \vdash A \backslash C \quad \text{iff} \quad A \bullet B \vdash C \quad \text{iff} \quad A \vdash C/B$

(transitivity)

$$\frac{A \vdash B \quad B \vdash C}{A \vdash C}$$
 CUT

" $A \vdash B$ " means

"any expression of type A is also an expression of type B"

6/24

Unpacking residuation

(residuation) $B \vdash A \setminus C$ iff $A \bullet B \vdash C$ iff $A \vdash C/B$

$$\frac{B \vdash A \setminus C}{A \bullet B \vdash C} \qquad \frac{A \bullet B \vdash C}{A \vdash C/B}$$

$A \bullet B \vdash C$	$A \vdash C/B$	
$B \vdash A \overline{\setminus C}$	$\overline{A \bullet B \vdash C}$	

DP ● left ⊢ S left ⊢ DP/S

Sample derivation of Ann saw Bill

Assume Ann and Bill have type DP and saw has type $(DP \setminus S)/DP$:

8/24

$$\frac{\overline{(DP \setminus S)/DP} \vdash (DP \setminus S)/DP}{(DP \setminus S)/DP \bullet DP \vdash DP \setminus S} \xrightarrow{AXIOM}{RESIDUATION} \\ \frac{\overline{(DP \setminus S)/DP \bullet DP} \vdash DP \setminus S}{Ann \bullet (saw \bullet Bill) \vdash S} \xrightarrow{AXIOM}{AXIOM} \\$$

It's the logic of external merge:

Joachim Lambek

Quantifier Raising as a logical inference

- Montague 1973: Quantifying In: (3065 citations)
- May 1978,1985: Quantifier Raising (QR): (3286 citations)

10/24

Richard Montague

11/24

Robert May

$\ensuremath{\text{NL}_{\text{QR}}}\xspace$, the logic of scope

- Atomic formulas: $\mathcal{A}t = \mathsf{DP} \,|\, \mathsf{S} \,|\, \mathsf{N} \,|\, \mathsf{Q}$
- Variables: $\mathcal{V} = x |y| z |x'| x'' |x''', ...$
- Formulas: $\mathcal{F} = \mathcal{A}t | \mathcal{F} \setminus \mathcal{F} | \mathcal{F} \bullet \mathcal{F} | \mathcal{V} | \lambda \mathcal{VF}$
- Sequents: $\mathcal{F} \vdash \mathcal{F}$
- Axioms: $A \vdash A$
- Logical rules:

(residuation) $B \vdash A \setminus C$ iff $A \bullet B \vdash C$ iff $A \vdash C/B$

(transitivity)

$$\frac{A \vdash B \quad B \vdash C}{A \vdash C} \text{ CUT}$$

 $(Quantifier Raising) \qquad \qquad B[A] \vdash G$

 $B[A] \vdash C \quad \text{iff} \quad A \bullet \lambda x B[x] \vdash C$

Sample derivation: Ann saw everyone

Assume *everyone* has type $S(DP \setminus S)$, the traditional type of an (extensional) generalized quantifier:

The structure of the red type is given on the next slide.

13/24

A type from the middle of the derivation that tells the story 4^{4}

Arg on left; this is supposed to look highly familiar to linguists;

Type operators

- So DP, DP\S, DP (DP\S) are types.
- What about $\lambda x(DP \bullet ((DP \setminus S)/DP \bullet x))$?
- An expression (term) of type DP\S maps any object of type DP onto an object of type S.
- So DP\S is the type of an object-level function.
- $\lambda x(DP \bullet ((DP \setminus S)/DP \bullet x))$ is a type operator.
- It maps any type into a type.
- Systems w/type operators = rear face of the Barendregt cube (systems with dependent types form the right face)
 - λ_{ω} , the simply-typed lambda calculus with type operators
 - System F_{ω} , the higher-order polymorphic λ calclus

See Pierce 2002, especially chapters 29 and 30

Some properties of NL_{QR}

- Cut elimination
- Sound and complete wrt the usual relational semantics
- Decidable. This is surprising:
 - $-A \vdash B$ iff
 - $A \bullet \lambda x x \vdash B$ iff
 - $(A \bullet \lambda x x) \bullet \lambda x x \vdash B \dots$
- Proof strategy
 - Easy: QR doesn't interfere with Lambek's proof
 - Soundness and completeness not trivial. Simulate embedding of the λ -calculus in combinatory logic.
 - Decidability, in the equivalent sequent presentation:
 - * Each instance of residuation elimiantes one slash.
 - * Each instance of QR can be associated with a unique instance of residuation.
 - * Finite number of slashes in conclusion sequent.

Barker (under revision); extends to overt syntactic movement

Connection with applicatives and monads?

What do we need to have an applicative?

- Type operation: $CA \Rightarrow (A \rightarrow B) \rightarrow B$
- unit ("pure"): $\rho: A \to CA$
- circled star thingie: $\star: \mathcal{C}(A \to B) \to (\mathcal{C}A) \to \mathcal{C}B$

Theorems of the logic:

- $A \vdash B/(A \setminus B)$ "Lift"
- $C/((A \setminus B) \setminus C) \vdash (C/(A \setminus C)) \setminus (C/(B \setminus C))$

Does it obey the applicative laws?

Self-composable, scope ambiguity, finite readings

Example: simple binding by simulating a Reader monad $\frac{10^{10}}{10^{10}}$

- Ann saw Bill (from above): $DP \bullet ((DP \setminus S)/DP \bullet DP) \vdash S$
- Assume the pronoun him has type $(DP \setminus S)/(DP \setminus S)$.
- Ann saw him: $DP \bullet ((DP \setminus S)/DP \bullet (DP \setminus S)) \vdash DP \setminus S$
- Curry-Howard proof labeling: λx .**saw** x **ann**.

Why it's important to have decidability...

Scope interactions, refresher

Charlow and Bumford: "lexical types drive the type shifting"

Andrews Amalgams: ellipsis to a containing continuation²⁴

Johnson 2013:

a. Sally will eat something today, but I don't know what ___.

b. Sally will eat [I don't know what __] today.

 $G \equiv S /\!\!/ (DP \S)$ (i.e., scope-taking DP, a generalized quantifier)

The full power of continuations (indexed applicatives) 21/24

Assume AMALGAM has type $Q/(GAP \setminus S)$.

Sketch of Sally ate [I don't know what AMALGAM]:

 $\frac{\lambda y(\operatorname{idk} \cdot (\operatorname{what} \cdot y)) \vdash (\operatorname{DP} \mathbb{S}) \mathbb{S} \quad G \circ \lambda x(\operatorname{Sally} \cdot (\operatorname{ate} \cdot x)) \vdash S}{(G / ((\operatorname{DP} \mathbb{S}) \mathbb{S}) \circ \lambda y(\operatorname{idk} \cdot (\operatorname{what} \cdot y))) \circ \lambda x(\operatorname{Sally} \cdot (\operatorname{ate} \cdot x)) \vdash S} = LEX} = LEX$ $\frac{(\operatorname{idk} \cdot (\operatorname{what} \cdot \operatorname{AMALGAM})) \circ \lambda x(\operatorname{Sally} \cdot (\operatorname{ate} \cdot x)) \vdash S}{\operatorname{Sally} \cdot (\operatorname{ate} \cdot (\operatorname{idk} \cdot (\operatorname{what} \cdot \operatorname{AMALGAM}))) \vdash S} =$

- Type constructors lifting A into $(A \rightarrow B) \rightarrow B$ are not enough.
- Also need A into $(A \rightarrow B) \rightarrow C$
- Not a monad. Not an applicative.

Details in my 2013 Linguistics and Philosopy paper on sluicing

Conclusions

Here's the logic:

- Provides the full power of continuations
- Simulates applicatives
- Full factorial scope ambiguity
- Soundness and completeness, decidability
- The lexical types drive the proof search

22/24

23/24

THANKS!

(For today's talk, especially thanks to Colin, Simon, and Dylan)

Selected References

Barendregt, Henk. 1991. [title] *J. of Functional Programming* **1.2**:125–154 Barker, Chris. 2007. Parasitic Scope. *L& P* **30.4**: 407–444.

Barker, Chris. 2015. Scope. In Shalom Lappin and Chris Fox (eds). Handbook of Contemporary Semantics, 2d edition. Wiley-Blackwell.

- Barker, Chris. 2018. [Soundness, completeness, and decidability for NL_{λ}] Available at semanticsarchive.net; currently under revision.
- Barker, Chris and Chung-chieh Shan. 2014. *Continuations and Natural Language*. Oxford.
- Johnson, Kyle. 2013. Recoverability of deletion. In Kuniya Nasukawa and Henk C. van Riemsdijk (eds). *Identity Relations in Grammar*. Berlin: Mouton de Gruyter (Studies in Generative Grammar series).
- Kiselyov, Oleg, Shan, Chung-chieh. 2014. Continuation hierarchy and quantifier scope. In *Formal Approaches to Semantics and Pragmatics*, Eric McCready, Katsuhiko Yabushita, Kei Yoshimoto (eds).
- Lambek, Joachim. 1958. The mathematics of sentence structure. *The American Mathematical Monthly* **60.3**: 154–170.
- Morrill, Glyn, Oriol Valent n, and Mario Fadda. 2011. The displacement calculus. Journal of Logic, Language and Information 20(1):148. Solomon, Mike. 2009. Partitives and the semantics of *same*. se