NASSLLI Workshop
New type-theoretic tools in natural language semantics
Thursday 28 June 2018, 3PM CMU

Scope in Natural Language:
Why Monads aren’t Enough

Chris Barker

New York University, Department of Linguistics

Version of June 28, 2018.

Plan 2/24

e Dependent types, applicatives, monads, what are we doing?
e Scope in Natural Language (new: algebraic presentation)
— type operators
— decidability
e Empiricial challenges
— WH question formation, relative clause formation
— Recursive scope: some of the same, Andrews Amal-
gams

What are we doing?

3/24

e What algebraic structure best characterizes which natural

language phenomena?

e Is the logic of presupposition intuitionistic or classical?
e Does intenstionality call for a monad or a comonad?
e Do we need monads, or are applicatives what we really care

about?
Type operator Plain Fancy
Writer monad A AXxB
Reader monad A B—oA
State monad A B — (A xB)
Continuation monad A (A—B)—B
Continuations A (A—=B)—=C

Draw circles

Application

supplementals
simple binding
binding

simple scope
scope

Scope 4/24

Ann saw Bill.

Ann saw everyone. everyone(Ax.sawannx)
Someone saw everyone.

Ann saw who?

Who did Ann see __?

That’s the book [the author of which] | met last night.
Ann ate something, but | don’t know what she ate.

Ann ate something, but | don’t know what . sluice

Ann ate [l don’t know what __] yesterday.

Where we’re headed on the Barendregt cube 5/24
fo

A
Full

AC

pelyret e opues b

e Barendregt 1991 J. of Functional Programming 1.2:125-154
e Polymorphism: terms depend on types:
((/\A?\X:A.X):(VA.A s A)) [Int] = Ax:Int.x
e Dependent types: types depend on terms
e Type operators: types depend on types: Cie = (e — t) — t

Lambek’s type logic NL: the logic of external merge 6/24

Substructural: without Exchange, ‘O’ splits into *\" and ‘/’:
e Atomic formulas: At =DP|S|N|Q
e Formulas: F = At|FA\F|F/F|FeF
e Sequents: F L+ F
e Axiom schema: AFA
e Logical rules:

(residuation) B-A\C iff AeBFC iff AFC/B
(transitivity) Al BA - CB - C CUT

“A F B” means
“any expression of type A is also an expression of type B”

Unpacking residuation 7124

(residuation) B-HA\C iff AeBFHC iff A+ C/B

BFA\C AeBFC
AeBFC AFC/B

AeBIFC A+ C/B
B A\C AeBHFC

DPeleft S
left - DP/S

Sample derivation of Ann saw Bill 8/24
Assume Ann and Bill have type DP and saw has type (DP\S)/DP:

AXIOM
RESIDUATION
RESIDUATION

(DP\S)/DP F (DP\S)/DP

(DP\S)/DP e DP - DP\S

DP e ((DP\S)/DP eDP) I S
Anne (sawe Bill) - s

It’s the logic of external merge:
S
DP DP\S
Ann (DP\S)/DP DP

saw Bill

9/24

Joachim Lambek

Quantifier Raising as a logical inference 10/24

e Montague 1973: Quantifying In: (3065 citations)

e May 1978,1985: Quantifier Raising (QR): (3286 citations)

everyone(Ax.Ann saw x) - S
Montague *L Ann saw everyone + S T May
S
everyone o
S A X S
Ann VP Ann VP

saw everyone saw X

11/24

Richard Montague Robert May

NLor, the logic of scope 12/24

e Atomic formulas: At =DP|S|N|Q

e Variables: V =x|y|z|x'|x"|x",...

e Formulas: F=At|A\F|F/F|FeF|VIANVF
e Sequents: F L+ F

e Axioms: AFA

e Logical rules:

(residuation) B-A\C iff AeBFC iff AFC/B

AFDB BFC

t 1t1vit
(transitivity) T

CuT

(Quantifier Raising) BIA]JFC iff A eAxB[x]F C

Sample derivation: Ann saw everyone 13/24

Assume everyone has type S(DP\S), the traditional type of an
(extensional) generalized quantifier:

DP e ((DP\S):/DP e DP) S OR S/(DP\S) - S/(DP\S) RE
DP e Ax(DP e ((DP\S)/DP eXx)) - S RES S/(DP\S)/(DP\S) - S RE
Ax(DP e ((DP\S)/DP e x)) - DP\S DP\S I (S/(DP\S)/)S oL

Ax(DP e ((DP\S)/DP ex)) I (S/(DP\S)/)S
(S/(DP\S)/) @ Ax(DP e ((DP\S)/DP ex)) - S
DP e ((DP\S)/DP ¢ S/(DP\S)/) F S
Anne (saw e everyone) S

RES
QR

The structure of the red type is given on the next slide.

A type from the middle of the derivation that tells the stW?A'

S/(DP\()\-
|

everyone Ax o

/\

DP °

| N

Ann (DP\S)/DP X

Saw

Arg on left; this is supposed to look highly familiar to linguists;

Type operators 15/24

e S0 DP, DP\S, DP e (DP\S) are types.
e What about Ax(DP e ((DP\S)/DP e x))?

e An expression (term) of type DP\S maps any object of type
DP onto an object of type S.
e S0 DP\S is the type of an object-level function.

e Ax(DP e ((DP\S)/DP e x)) is a type operator.
e It maps any type into a type.
e Systems w/type operators = rear face of the Barendregt cube
(systems with dependent types form the right face)
— Aw, the simply-typed lambda calculus with type operators
— System F,, the higher-order polymorphic A calclus

See Pierce 2002, especially chapters 29 and 30

Some properties of NLqr 16/24

e Cut elimination
e Sound and complete wrt the usual relational semantics
e Decidable. This is surprising:
— A+ Biff
A e Axx F B iff
(A @Axx) @ Axx - B ...
e Proof strategy
— Easy: QR doesn’t interfere with Lambek’s proof
— Soundness and completeness not trivial. Simulate em-
bedding of the A-calculus in combinatory logic.
— Decidability, in the equivalent sequent presentation:
+ Each instance of residuation elimiantes one slash.
x Each instance of QR can be associated with a unique
instance of residuation.
x Finite number of slashes in conclusion sequent.

Barker (under revision); extends to overt syntactic movement

Connection with applicatives and monads?

What do we need to have an applicative?
e Type operation: CA=(A—B)—B
e unit (“pure”): p:A — CA
e circled star thingie: xC(A — B) — (CA) —

Theorems of the logic:
e A B/(A\B) “Lift”
o C/((ANB)\C) F (C/(ANC)\()

Does it obey the applicative laws?

Self-composable, scope ambiguity, finite readings

17/24

Example: simple binding by simulating a Reader monadt/24

e Ann saw Bill (from above): DP e ((DP\S)/DP ¢ DP) - S

e Assume the pronoun him has type (DP\S)/(DP\S).

e Ann saw him: DP e ((DP\S)/DP e (DP\S)/(DP\S)) F DP\S
e Curry-Howard proof labeling: Ax.sawxann.

Why it's important to have decidability...

Scope interactions, refresher

Ak.Vy.Ax. k(sawxy)
Ct

/\

Ak.Vy. ky Am.Ak.m(Ny.dx. k(sawxy))
Ce Ce—Ct

everyone ‘

Ak.3Ax. k(sawx)
Cle —1t)

T

An.hk.n(Ax.k(sawx)) Ak.dAx.kx
Ce—~Cle—t) Ce

‘ someone

Ak. ksaw
Cie—-e—-1t)
E
saw
e—e—t

Sdw

Ak.Ax.Vy. kisawxy)
Ct

/\

Ak Wy .ky AmAk.Ix.m(Ay.k(sawxy))
Ce Ce -~ Ct

everyone ‘

Ak.Ax. k(sawx)
Cle—1)

T

An.dk.n(Ax.k(sawx)) Ak.dx.kx

Ce—~Cle—1t) Ce
‘ someone
Mk. ksaw
Cle—e—1t)
E
saw
e—-e—t
saw

19/24

Charlow and Bumford: “lexical types drive the type shifting”

Andrews Amalgams: ellipsis to a containing continuati®®{24

Johnson 2013:
a. Sally will eat something today, but | don’t know what __.
b. Sally will eat [I don’t know what __] today.

idk e (what e DP\\S) - S }\
DP\S o Ax(idKk e (Wha'[ox \R
Ax(idk e (what e x)) - (DP\\S) \S GHG g
G//((DP\S)\S) o Ax(idk e (whate x)) F G N
AMALGAM o Ax(idk e (whate x)) - G A
idk e (what ¢ AMALGAM) F G

Ay(idk e (Whatey)) - (DP\S)\\S G o Ax(Sally e (ateox
(G/((DP\S)\S) o Ay(idk e (whatey))) o Ax(Sally e (ate e x)
(idk @ (What ¢ AMALGAM)) o Ax(Sally e (ate e x)) - S
Sally e (ate e (idk e (what ¢ AMALGAM))) F S

/L

)\ LEX

G = S//(DP\\S) (i.e., scope-taking DP, a generalized quantifier)

The full power of continuations (indexed applicatives) 21/24
Assume AMALGAM has type Q/(GAP\S).
Sketch of Sally ate [l don’t know what AMALGAM]:

Ay(idk - (what - y)) = (DP\\S)\\S Go Ax(Sally - (ate - x)) - S

(G ((DP\\$)\\S) o Ay(idk - (what - y))) o Ax(Sally - (ate - x)) - S

=, LEX
(idk - (what - AMALGAM)) o Ax(Sally - (ate - x)) = S

Sally - (ate - (idk - (what - AMALGAM))) 8

e Type constructors lifting A into (A — B) — B are not enough.
e Alsoneed A into (A — B) — C
e Not a monad. Not an applicative.

Details in my 2013 Linguistics and Philosopy paper on sluicing

Conclusions 22/24

Here’s the logic:

(external merge) BFA\C iff AeBFC iff AFC/B
(scope) B[A]F C iff A eAxB[x]F C

e Provides the full power of continuations

e Simulates applicatives

e Full factorial scope ambiguity

e Soundness and completeness, decidability
e The lexical types drive the proof search

23/24

THANKS!

(For today’s talk, especially thanks to Colin, Simon, and Dylan)

Selected References 24/24
Barendregt, Henk. 1991. [title] J. of Functional Programming 1.2:125—154
Barker, Chris. 2007. Parasitic Scope. L& P 30.4: 407—-444.

Barker, Chris. 2015. Scope. In Shalom Lappin and Chris Fox (eds). Handbook
of Contemporary Semantics, 2d edition. Wiley-Blackwell.

Barker, Chris. 2018. [Soundness, completeness, and decidability for NL,]
Available at semanticsarchive.net; currently under revision.

Barker, Chris and Chung-chieh Shan. 2014. Continuations and Natural Lan-
guage. Oxford.

Johnson, Kyle. 2013. Recoverability of deletion. In Kuniya Nasukawa and
Henk C. van Riemsdijk (eds). Identity Relations in Grammar. Berlin: Mou-
ton de Gruyter (Studies in Generative Grammar series).

Kiselyov, Oleg, Shan, Chung-chieh. 2014. Continuation hierarchy and quan-
tifier scope. In Formal Approaches to Semantics and Pragmatics, Eric
McCready, Katsuhiko Yabushita, Kei Yoshimoto (eds).

Lambek, Joachim. 1958. The mathematics of sentence structure. The Ameri-
can Mathematical Monthly 60.3: 154—170.

Morrill, Glyn, Oriol Valent n, and Mario Fadda. 2011. The displacement calcu-
lus. Journal of Logic, Language and Information 20(1):148.

Solomon, Mike. 2009. Partitives and the semantics of same. se

