
NASSLLI Workshop
New type-theoretic tools in natural language semantics

Thursday 28 June 2018, 3PM CMU

Scope in Natural Language:
Why Monads aren’t Enough

Chris Barker
New York University, Department of Linguistics

Version of June 28, 2018.
1

2

2/24Plan
• Dependent types, applicatives, monads, what are we doing?
• Scope in Natural Language (new: algebraic presentation)

– type operators
– decidability

• Empricial challenges
– WH question formation, relative clause formation
– Recursive scope: some of the same, Andrews Amal-

gams

13

3/24What are we doing?

• What algebraic structure best characterizes which natural
language phenomena?
• Is the logic of presupposition intuitionistic or classical?
• Does intenstionality call for a monad or a comonad?
• Do we need monads, or are applicatives what we really care

about?

Type operator Plain Fancy Application

Writer monad A A× B supplementals
Reader monad A B→ A simple binding
State monad A B→ (A× B) binding
Continuation monad A (A→ B) → B simple scope
Continuations A (A→ B) → C scope

Draw circles

4

4/24Scope

(1) Ann saw Bill.

(2) Ann saw everyone. everyone(λx.sawannx)

(3) Someone saw everyone.

(4) Ann saw who?

(5) Who did Ann see ?

(6) That’s the book [the author of which] I met last night.

(7) Ann ate something, but I don’t know what she ate.

(8) Ann ate something, but I don’t know what . sluice

(9) Ann ate [I don’t know what] yesterday.

15

5/24Where we’re headed on the Barendregt cube

• Barendregt 1991 J. of Functional Programming 1.2:125–154
• Polymorphism: terms depend on types:(

(ΛAλx:A.x):(∀A.A→ A)
)
[Int] = λx:Int.x

• Dependent types: types depend on terms
• Type operators: types depend on types: Cte = (e→ t) → t

6

6/24Lambek’s type logic NL: the logic of external merge

Substructural: without Exchange, ‘⊃’ splits into ‘\’ and ‘/’:

• Atomic formulas: At = DP | S | N | Q

• Formulas: F = At |F\F |F/F |F • F
• Sequents: F ` F
• Axiom schema: A ` A
• Logical rules:

(residuation) B ` A\C iff A • B ` C iff A ` C/B

(transitivity)
A ` B B ` C

CUT
A ` C

“A ` B” means
“any expression of type A is also an expression of type B”

17

7/24Unpacking residuation

(residuation) B ` A\C iff A • B ` C iff A ` C/B

B ` A\C
A • B ` C

A • B ` C
A ` C/B

A • B ` C
B ` A\C

A ` C/B
A • B ` C

DP • left ` S
left ` DP/S

8

8/24Sample derivation of Ann saw Bill
Assume Ann and Bill have type DP and saw has type (DP\S)/DP:

AXIOM
(DP\S)/DP ` (DP\S)/DP

RESIDUATION
(DP\S)/DP • DP ` DP\S

RESIDUATION
DP • ((DP\S)/DP • DP) ` S

Ann • (saw • Bill) ` S

It’s the logic of external merge:

S

DP\S

DP

Bill

(DP\S)/DP

saw

DP

Ann

19

9/24

Joachim Lambek

10

10/24Quantifier Raising as a logical inference

• Montague 1973: Quantifying In: (3065 citations)

• May 1978,1985: Quantifier Raising (QR): (3286 citations)

Montague ↓ everyone(λx.Ann saw x) ` S
=======================Ann saw everyone ` S ↑ May

S

VP

everyonesaw

Ann
≡

S

•

S

VP

xsaw

Ann

λ x

everyone

111

11/24

Richard Montague Robert May

12

12/24NLQR, the logic of scope

• Atomic formulas: At = DP | S | N | Q

• Variables: V = x |y | z | x ′ | x ′′ | x ′′′, ...

• Formulas: F = At |F\F |F/F |F • F |V | λVF
• Sequents: F ` F
• Axioms: A ` A
• Logical rules:

(residuation) B ` A\C iff A • B ` C iff A ` C/B

(transitivity)
A ` B B ` C

CUT
A ` C

(Quantifier Raising) B[A] ` C iff A • λxB[x] ` C

113

13/24Sample derivation: Ann saw everyone
Assume everyone has type S(DP\S), the traditional type of an
(extensional) generalized quantifier:

···
DP • ((DP\S)/DP • DP) ` S

QR
DP • λx(DP • ((DP\S)/DP • x)) ` S

RES
λx(DP • ((DP\S)/DP • x)) ` DP\S

S/(DP\S) ` S/(DP\S)
RES

S/(DP\S)/(DP\S) ` S
RES

DP\S ` (S/(DP\S)/)S
CUT

λx(DP • ((DP\S)/DP • x)) ` (S/(DP\S)/)S
RES

(S/(DP\S)/) • λx(DP • ((DP\S)/DP • x)) ` S
QR

DP • ((DP\S)/DP • S/(DP\S)/) ` S
Ann • (saw • everyone) ` S

The structure of the red type is given on the next slide.

14

14/24A type from the middle of the derivation that tells the story

•

·

•

•

x(DP\S)/DP

saw

DP

Ann

λx

S/(DP\S)

everyone

Arg on left; this is supposed to look highly familiar to linguists;

115

15/24Type operators

• So DP, DP\S, DP • (DP\S) are types.
• What about λx(DP • ((DP\S)/DP • x))?
• An expression (term) of type DP\S maps any object of type

DP onto an object of type S.
• So DP\S is the type of an object-level function.

• λx(DP • ((DP\S)/DP • x)) is a type operator.
• It maps any type into a type.
• Systems w/type operators = rear face of the Barendregt cube

(systems with dependent types form the right face)
– λω, the simply-typed lambda calculus with type operators
– System Fω, the higher-order polymorphic λ calclus

See Pierce 2002, especially chapters 29 and 30

16

16/24Some properties of NLQR
• Cut elimination
• Sound and complete wrt the usual relational semantics
• Decidable. This is surprising:

– A ` B iff
A • λxx ` B iff
(A • λxx) • λxx ` B ...

• Proof strategy
– Easy: QR doesn’t interfere with Lambek’s proof
– Soundness and completeness not trivial. Simulate em-

bedding of the λ-calculus in combinatory logic.
– Decidability, in the equivalent sequent presentation:
∗ Each instance of residuation elimiantes one slash.
∗ Each instance of QR can be associated with a unique

instance of residuation.
∗ Finite number of slashes in conclusion sequent.

Barker (under revision); extends to overt syntactic movement

117

17/24Connection with applicatives and monads?

What do we need to have an applicative?
• Type operation: CA⇒ (A→ B) → B
• unit (“pure”): ρ:A→ CA
• circled star thingie: ?:C(A→ B) → (CA) → CB

Theorems of the logic:
• A ` B/(A\B) “Lift”
• C/((A\B)\C) ` (C/(A\C))\(C/(B\C))

Does it obey the applicative laws?

Self-composable, scope ambiguity, finite readings

18

18/24Example: simple binding by simulating a Reader monad

• Ann saw Bill (from above): DP • ((DP\S)/DP • DP) ` S
• Assume the pronoun him has type (DP\S)/(DP\S).
• Ann saw him: DP • ((DP\S)/DP • (DP\S)/(DP\S)) ` DP\S
• Curry-Howard proof labeling: λx.sawxann.

Why it’s important to have decidability...

119

19/24

Charlow and Bumford: “lexical types drive the type shifting”

20

20/24Andrews Amalgams: ellipsis to a containing continuation

Johnson 2013:
a. Sally will eat something today, but I don’t know what .
b. Sally will eat [I don’t know what] today.

idk • (what • DP)S) ` S
λ

DP)S ◦ λx(idk • (what • x)) ` S)R
λx(idk • (what • x)) ` (DP)S))S G ` G(L

G(((DP)S))S) ◦ λx(idk • (what • x)) ` G
λ

AMALGAM ◦ λx(idk • (what • x)) ` G
λidk • (what • AMALGAM) ` G

λy(idk • (what • y)) ` (DP)S))S G ◦ λx(Sally • (ate • x)) ` S
(L

(G(((DP)S))S) ◦ λy(idk • (what • y))) ◦ λx(Sally • (ate • x)) ` S
λ, LEX

(idk • (what • AMALGAM)) ◦ λx(Sally • (ate • x)) ` S
λ

Sally • (ate • (idk • (what • AMALGAM))) ` S

G ≡ S((DP)S) (i.e., scope-taking DP, a generalized quantifier)

121

21/24The full power of continuations (indexed applicatives)

Assume AMALGAM has type Q/(GAP\S).

Sketch of Sally ate [I don’t know what AMALGAM] :

• Type constructors liftingA into (A→ B) → B are not enough.
• Also need A into (A→ B) → C
• Not a monad. Not an applicative.

Details in my 2013 Linguistics and Philosopy paper on sluicing

22

22/24Conclusions

Here’s the logic:

B ` A\C iff A • B ` C iff A ` C/B(external merge)

B[A] ` C iff A • λxB[x] ` C(scope)

• Provides the full power of continuations
• Simulates applicatives
• Full factorial scope ambiguity
• Soundness and completeness, decidability
• The lexical types drive the proof search

123

23/24

THANKS!

(For today’s talk, especially thanks to Colin, Simon, and Dylan)

24

24/24Selected References
Barendregt, Henk. 1991. [title] J. of Functional Programming 1.2:125–154
Barker, Chris. 2007. Parasitic Scope. L& P 30.4: 407–444.
Barker, Chris. 2015. Scope. In Shalom Lappin and Chris Fox (eds). Handbook

of Contemporary Semantics, 2d edition. Wiley-Blackwell.
Barker, Chris. 2018. [Soundness, completeness, and decidability for NLλ]

Available at semanticsarchive.net; currently under revision.
Barker, Chris and Chung-chieh Shan. 2014. Continuations and Natural Lan-

guage. Oxford.
Johnson, Kyle. 2013. Recoverability of deletion. In Kuniya Nasukawa and

Henk C. van Riemsdijk (eds). Identity Relations in Grammar. Berlin: Mou-
ton de Gruyter (Studies in Generative Grammar series).

Kiselyov, Oleg, Shan, Chung-chieh. 2014. Continuation hierarchy and quan-
tifier scope. In Formal Approaches to Semantics and Pragmatics, Eric
McCready, Katsuhiko Yabushita, Kei Yoshimoto (eds).

Lambek, Joachim. 1958. The mathematics of sentence structure. The Ameri-
can Mathematical Monthly 60.3: 154–170.

Morrill, Glyn, Oriol Valent n, and Mario Fadda. 2011. The displacement calcu-
lus. Journal of Logic, Language and Information 20(1):148.

Solomon, Mike. 2009. Partitives and the semantics of same. se

