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Chapter 1

Introduction

The compositional, denotational approach to natural language semantics pioneered by Richard

Montague (1970a, 1970b, 1973) was underwritten by his development of an extension of higher-

order modal logic suitable for interpreting a wide range of natural language sentences. A precise

formulation of syntax and semantics for what he named ‘intensional logic’ is provided in The

Proper Treatment of Quantification in Ordinary English (Montague 1973).

Potential to apply category theory to the study of Montague’s intensional logic has been noted

in the literature. Lambek (1988) observed some resemblance between the semantics Montague

offers for his logic and the topos SetW , for a set W of ‘possible worlds’. A category-theoretic

approach to the semantics of predicate S4 modal logic took shape around this time, with the

general formulation coming in Reyes and Zolfaghari (1991). Reyes (1991) made use of this

approach in presenting a linguistically motivated type theory and furthermore mooted a con-

nection to Montague’s logic. Awodey, Buchholtz, and Zwanziger (2016) provided the precise

categorical semantics. The present thesis expands on that work, introducing a simplified syntax,

a full-fledged deductive calculus, and a more user-friendly presentation of the semantics which

takes the notion of comonad as basic.

In Chapter 2, we introduce a revised version of Montague’s logic, MIL, different from the

original most notably in that the de re/de dicto distinction is maintained by the noncommuta-
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tivity of substitution with the necessity and ‘intension’ operators, rather than by abandoning the

principle of �-reduction. As a result, MIL is the first system to allow �-reduction into oblique

contexts. MIL also provides a simplified approach to the syntax of modal type theories such as

those considered in Bierman and de Paiva (1999) and Pfenning and Davies (2000).

Chapter 3 gives a categorical semantics of MIL. The approach interprets Montague’s ‘inten-

sion’ and ‘extension’ operators as operations of derived from the structure of a comonad. Finally,

in Chapter 4, we recover the interpretation from Montague (1973) as a special case of the cat-

egorical semantics and indicate how to subsume other examples such as the Boolean-valued

semantics of Gallin (1975).
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Chapter 2

Montague’s Intensional Logic

The system MIL is a revised version of Montague’s ‘intensional logic’. The central insight of

this approach, originating in Awodey, Buchholtz, and Zwanziger (2015), is the identification of

Montague’s p (‘intension’) and q (‘extension’) operators as term constructors of a comonadic

modal type theory (S4 neccesity modal type theory) such as that studied in Bierman and de Paiva

(1999). Indeed, the fruitfulness of this approach discloses that Montague’s intensional logic is,

in essence, the marriage of typed higher-order logic and simple type theory with a comonadic

modality.

An attractive feature of Montague (1973) is that it provides separate logical forms for de re

and de dicto sentences. However, Montague (1973)’s use of �-notation in the representation of

de re sentences means that system does not satisfy the standard reduction rule for application of

�-terms. This problem can be rectified by applying the lessons of Bierman and de Paiva (ibid.),

or of Pfenning and Davies (2000). However, the syntax for the intension operator suggested by

each of these works is unwieldy. The syntax for the intension operator proposed below is simpler,

and avoids further complications to the logic as a whole (such as in ibid.).

A deductive system for the logic is also presented below. As an example of the power of this

system, we show that substitution of terms deemed ‘rigid designators’ (after Kripke 1980) com-

mutes with the intension operator. This fact completes the current work’s treatment of binding
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and substitution into ‘oblique’ (or ‘modal’) contexts, providing a simple and intuitive approach

to an issue dating to Quine (1943) and before.

The system MIL is presented in Sections 1 and 2. Any substantial differences with Mon-

tague’s original are noted, and alternative approaches to comonadic modal type theory are dis-

cussed. Section 3 introduces the deductive system and certain theorems thereof.

2.1 Types

The types of MIL are summarized in Figure 2.1, below. More detailed remarks follow.

(Basic Types)
E, T Type

A Type B Type
(Ñ Form.)

A Ñ B Type

A Type
(5 Form.)5A Type

Figure 2.1: MIL Type Formation Rules

The types are defined recursively by the following rules:

• (T1). There are basic types E,T.

These do duty for Montague’s type e of ‘entities’ and t of ‘truth values’. We use capital

letters for types, in line with the practice of modern type theorists.

• (T2). If A and B are types, then so is A Ñ B.

The constructor p´ Ñ ´q for function types does duty for Montague’s x´,´y, again using

a prevalent modern notation.

• (T3). If A is a type, then so is 5A.

The type operator 5 does duty for Montague’s xs,´y (instead of the analog pS Ñ ´q).

We abandon the function type-style notation, since, under the semantics for MIL provided

below, 5 is not in general replaceable using p´ Ñ ´q.
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In terms of the Kripke semantics of Montague’s system, the difference comes from allow-

ing the set of entities to vary between worlds. Writing Epwq for the set of entities at a

world w P W , an intension i will be an assignment

w fiÑ ipwq P Epwq .

That is, i is a member of the set
π

wPW
Epwq of dependent functions, functions whose

‘codomain’ varies across their domain, rather than a member of the function set EW for a

constant set of entities E.

Instead of the function type interpretation, 5 will be interpreted as a comonadic type oper-

ator or S4 necessity type modality, as appearing in, inter al., Bierman and de Paiva (1999).

The notation 5 for an S4 modality appeared in Awodey, Birkedal, and Scott (2002). Work

such as Schreiber (2011) and Shulman (2015) built the convention, used here, that 5 be

used for S4 necessity type modalities in particular.

The natural treatment of 5 as a type modality with a very general semantics underscores

the wisdom of Montague’s decision to use the type operator xs,´y rather than integrate a

basic type s.

2.2 Terms

The term calculus of MIL consists of the rules for intuitionistic typed higher order logic (cf.

Jacobs 1999, Lambek and Scott 1988), together with two additional rules for the ‘intension’ and

‘extension’ operators, p and q , respectively. Predicates are taken to be terms of type A Ñ T,

where A is a type. Rather than taking the necessity modality on predicates, 2, as primitive, it is

defined using p . This speeds a number of proofs below.

The terms of MIL are summarized in Figure 2.2, below. Detailed remarks follow.
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�, x : A,� | x : A

¨ | c : A
� | c : A

�, x : A | t : B
(Ñ Intro.)

� | �x.t : A Ñ B

� | t : A Ñ B � | u : A
(Ñ Elim.)

� | tu : B

� | s1 : 5A1 ... � | sn : 5An x1 : 5A1, ..., xn : 5An | tpx1, ..., xnq : B
(5 Intro., or Intension)

� | ptprs1s, ..., rsnsq : 5B

� | t : 5A
(5 Elim., or Extension)

� | qt : A

� | � : T � |  : T
(^ Form.)

� | � ^  : T
, and similarly for _ and ñ.

� | � : T
( Form.)

� |  � : T
� | t : A � | u : A

(“A Form.)
� | t “A u : T

(J Form.)¨ | J : T , and similarly for K.

�, x : A | � : T
(@ Form.)

� | @x.� : T
, and similarly for D.

Figure 2.2: Term Calculus of MIL

2.2.1 Contexts

Each type A is assigned an infinite set of variables of type A. We write x : A when x is a variable

of type A and say that x : A is a typed variable. We write �,� for a finite or empty lists of typed

variables. MIL considers terms t together with type B and a list of typed variables � containing

at least all the free variables in t. � is called the context of t. Such terms-in-context are formally
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written � | t : B.1 For readability, however, the � | may be omitted when inferrable. Schematic

lists such as x1, ..., xn (where x1, ..., xn denote metavariables) may possibly be empty and may

be abbreviated as x.

The terms-in-context (henceforth simply terms) are defined recursively the labeled rules:

2.2.2 Typed Higher-Order Logic

Lambda Calculus

• (LC1). There is a term �, x : A,� | x : A for any context �, x : A,�.

• (LC2). If ¨ | c : A is a term, then � | c : A is a term.

• (LC3). If �, x : A | t : B is a term, then � | �x.t : A Ñ B is a term.

• (LC4). If t : A Ñ B and u : A are terms, then tu : B is a term.

Logic

• (L1). If � : T and  : T are terms, then � ^  : T,� _  : T, and � ñ  : T are terms.

• (L2). If � : T is a term, then  � : T is a term.

• (L3). There are terms ¨ | J : T and ¨ | K : T.

• (L4). If �, x : A | � : T is a term, then � | @x.� : T and � | Dx.� : T are terms.

• (L5). If t : A and u : A are terms, then t “A u : T is a term.

2.2.3 Modal Type Theory

Intuitively, the next rule, Intension, takes a term x1 : 5A1, ..., xn : 5An | t, prepends a circumflex

(p ) to it, and marks each free variable x of t by enclosing it in square brackets. For example, a

1The symbol $ is reserved for the entailment relation on terms of type T, defined below.
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term

x : 5A, y : 5B | fpx, gpyqq

yields via Intension the term

x : 5A, y : 5B | pfprxs, gprysqq .

The notation r...s is chosen to suggest substitution, and it indeed indicates a variant of ‘explicit

substitution’ (c.f. Abadi et al. 1991); the appearance of rss as a substring of a well-formed t

indicates that s was substituted for a(n unknown) free variable at the step where a(n inferrable)

p was adduced.

The precise statement of Intension requires an extended discussion of notation, below. The

rule is first stated here to complete the statement of the term calculus.

• (Intension). If x1 : 5A1, ..., xn : 5An | tpx1, ..., xnq : B and � | s1 : 5A1, ..., sn : 5An are

terms, then � | ptprs1s, ..., rsnsq : 5B is a term.

• (Extension). If t : 5A is a term, then qt : A is a term.

The rules Intension and Extension are to be regarded as introduction and elimination rules,

respectively, for the constructor 5.

Generalized Substitution

As noted, applying Intension to a term t involves marking each free variable x of t with square

brackets and prepending a p . The statement of Intension requires a meta-syntactic notation

conveying this.

To this end, we generalize the usual notation for substitution by allowing substitutions like

p p sqrrts{xs. The strings p s and rts are not terms of MIL, though they may be introduced by

Intension as substrings of terms.

Definition 1 (Generalized Substitution). Assume terms s and t0, ..., tn, variables x0, ..., xn, and

strings h P ts, psu and bi P tti, rtisu p0 § i § nq. Then hrb{xs is defined by:

8



• yrb{xs :”

$
’’&

’’%

y y R tx0, ...xnu

bi y ” xi

• crb{xs :” c

• p�y.rqrb{xs :”

$
’’&

’’%

�y.prrb{xsq y R tx0, ...xnu

�y.prrb0, ...bi´1, bi`1, ...bn{x0, ...xi´1, xi`1, ...xnsq y ” xi

• qrrb{xs :” qrb{xsrrb{xs

• p� ^  qrb{xs :” �rb{xs ^  rb{xs, and similarly for _,ñ.

• p �qrb{xs :”  p�rb{xsq

• Jrb{xs :” J, and similarly for K.

• p@y.�qrb{xs :”

$
’’&

’’%

@y.p�rb{xsq y R tx0, ...xnu

@y.p�rb0, ...bi´1, bi`1, ...bn{x0, ...xi´1, xi`1, ...xnsq y ” xi

, and

similarly for D.

• pq “A rqrb{xs :” qrb{xs “A rrb{xs

• rrsrb{xs :” rrrb{xss

• pprqrb{xs :” pprrb{xsq

• pqrqrb{xs :” qprrb{xsq

Substitution in MIL is simply generalized substitution in which h,b are required to be terms.

The reader may choose to view generalized substitution as ordinary substitution within an

auxiliary language MIL
1 ÅMIL.

The language MIL
1 is exactly the same as MIL, except the clause Intension is replaced by

the following:

• pMIL
1
1q. If t is a term, then rts is a term.

• pMIL
1
2q. If t : B is a term, then pt : 5B is a term.

With the notation now established, we review the rule Intension.

• (Intension). If x1 : 5A1, ..., xn : 5An | tpx1, ..., xnq : B and � | s1 : 5A1, ..., sn : 5An are
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terms, then � | ptprs1s, ..., rsnsq : 5B is a term.

Convention 2. We may abbreviate tprs1s, ..., rsnsq by tprssq, or even trss.

Convention 3. We may write 5� for a finite or empty list of typed variables with types all of the

form 5A (such as x1 : 5A1, ..., xn : 5An).

2.2.4 Defined Notations

• (Box). If x : 5A | �pxq : T is a term, then x : 5A | 2�prx1s, ..., rxnsq : T is defined by

2�prx1s, ..., rxnsq :” ppJ “5T p�prx1s, ..., rxnsqq .

Remark 4. Intuitively, 2�prxsq ‘checks whether � has the same intension as J’. This

reduction of 2 using p will simplify several proofs about MIL below. A similar reduction

appears as early as Montague’s Universal Grammar (1970).

• (Comultiplication, or Modal Principle 4). If 5� | x : 5A, then 5� | �prxsq : 55A is defined

by

�prxsq :” prxs .

• (Functorial Action of 5). If x : A | tpxq : B, then x : 5A | 5tprx1s, ..., rxnsq : 5B is defined

by

5tprx1s, ..., rxnsq :” ptpqrx1s, ..., qrxnsq .
2

Remark 5. In addition to maintaining the balance between ‘intensional operators’ p,2, 5, �

and their corresponding square brackets, explicitly tracking square brackets with 5 will

also serve to enforce a distinction between the terms 5ptpsrysqq (where spyq : A) and

5trspyqs (where spyq : 5A), which would otherwise both be written 5ptpspyqqq.

2We include the n “ 0 case: given a constant ¨ | c : A, then ¨ | 5c ” pcr¨{¨s ” pc : 5A .
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2.2.5 De Re and De Dicto

The merit of the current approach, with its particular formulation of Intension and Box, can be

seen by considering the intended translations into MIL of sentences such as

The president is necessarily the commander-in-chief. (2.1)

Such a sentence is generally held to have two readings: a de re and a de dicto. Under the de

re construal, 2.1 asserts that Donald Trump (the current president) must be the commander in

chief. Put another way, the property “is necessarily commander-in-chief” is predicated of the

thing (Latin de re) referenced by “the president”. Under the de dicto reading, 2.1 asserts that the

positions of president and commander-in-chief must be occupied by the same person. There is

an intuition that such a relation holds due to a relation in the definitions of the words “president”

and “commander-in-chief” (cf. Latin de dicto, meaning “of the utterance”). These readings are

truly different, for the former is false (as Trump was not always the commander-in-chief) while it

is quite plausible that the latter is true (command of the armed forces arguably being an integral

part of being president).

A key achievement of Montague, and a desideratum for subsequent work, is to supply logical

forms for both de re and de dicto readings. A number of approaches to this are now available

to us, and are surveyed below. Montague’s groundbreaking approach is not entirely satisfactory,

as he abandons the usual rules for �-calculus. The current work resolves this issue. The type

theories of Bierman and de Paiva (1999) and Pfenning and Davies (2000) are also observed to

supply a solution.

Montague’s Approach

In Montague (1973) (modified to the current notation), if “The President” translates to a constant

¨ | p : 5E and “is the commander-in-chief” to a predicate x : 5E | cpxq : T, then the sentence is

11



translated under the de dicto construal to

¨ | 2cppq : T ,

and under the de re one to

¨ | p�x.2cpxqqp : T .

Since these two terms are intended to be distinct, the usual reduction

p�x.2spxqqu ù� 2spuq

must fail.

The Current Approach

By contrast, the de dicto reading is represented in MIL by

¨ | 2cppq : T

and the de re by

¨ | 2cprpsq : T .

These two terms will not be equal in general: substitution of a term p commutes with Box (or

Intension) only when p is a rigid designator (in the sense of Theorem 15). There is consequently

no need to deviate from the usual rules for function types.

Other Approaches

Works such as Bierman and de Paiva (1999) and Pfenning and Davies (2000) contain operations

analogous to Intension.

Figure 22 summarizes the available logical forms for de re and de dicto. The columns la-

beled “As Proposed” give de re and de dicto forms as originally proposed by the works cited.

The columns labeled “Adapted” adopt some of the syntactic conventions of the current work,

12



facilitating a more direct comparison. In particular the box of Bierman and de Paiva (1999) and

Pfenning and Davies (2000) is replaced by p , harmonizing the syntax for the intension operator.

Since there is little difference in the treatment of de dicto, the key comparison is provided by the

“Adapted: De Re” column (starred).

Syntax for Intension Operator

As Proposed Adapted

Reference De Dicto De Re De Dicto ‹De Re‹

Montague (1973) ptpuq �x.ptpxqpuq ptpuq p�x.ptpxqqpuq

Bierman and box tpuq with ¨ for ¨ box tpxq with u for x ptpuq with ¨ for ¨ ptpxq with u for x

de Paiva (1999)

Pfenning and box tpuq let box x “ u in box tpxq ptpuq let px “ u in ptpxq

Davies (2000)

Current Work ptpuq ptprusq ptpuq ptprusq

Figure 2.3: Comparison of Comonadic Modal Type Theories

All three of Bierman and de Paiva (1999), Pfenning and Davies (2000), and the present work

have �-reduction, thus resolving the issue from Montague (1973). The syntax of the present work

has the advantage of being simpler than the alternatives, however. This is particularly evident

under nested intension operators. For instance, the term rendered

ptpxq with ppspyq with r for yq for x : 5A

in Bierman and de Paiva (adapted syntax) is rendered in MIL as the more manageable

ptrpsrrss : 5A .

This has advantages in calculations such as those in Section 2.5.
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On the other hand, MIL does not obey the subformula property ( p tpxq may appear in the

derivation of ptrpsrrss, but does not appear as a subformula).

2.2.6 The Restriction on Contexts

The restriction to contexts of the form x1 : 5A1, ..., x2 : 5A2 in the rules Intension and Box

will permit (in the next chapter) a very general semantics for MIL which includes using the

‘(co)Kleisli lift’ operation of a comonad to interpret Intension.

Similar regimentations on the context are employed in the comonadic type theories of Bier-

man and de Paiva (1999) and Pfenning and Davies (2000). Strikingly, while Montague (1973)

does not restrict contexts for p and 2, its semantic analysis of English is regimented so that more

general contexts for p and 2 are not employed.

It is possible to do away with any syntactic restriction on contexts if we restrict how contexts

are interpreted (see Chapter 3). Montague (1973) in effect takes this tack by restricting to a

constant domain of entities (see Chapter 4).

2.2.7 Tense Modalities

Montague’s non-S4 tense modalities are not treated here. A semantics is nevertheless indicated

in Chapter 4.

2.3 Structural Rules

The structural rules (weakening, contraction, permutation, and cut) are not directly included in

the deductive system, as they can be derived by routine induction on the structure of t:

Lemma 6 (Weakening). �,� | t : B
�, x : A,� | t : B

Lemma 7 (Contraction). x : A | t : B Ai “ Aj

x1 : A1, ..., xj´1 : Aj´1, xi : Ai, xj`1 : Aj`1, ..., xn : An | t : B

14



Lemma 8 (Permutation).

x : A | t : B
x1 : A1, ..., xi´1 : Ai´1, xj : Aj, xi`1 : Ai`1, ..., xj´1 : Aj´1, xi : Ai, xj`1 : Aj`1, ...xn : An | t : B

Lemma 9 (Substitution). x : A | s : Bi y : B | t : C
y1 : B1, ..., yi´1 : Bi´1,x : A, yi`1 : Bi`1, ..., yn : Bn | trs{yis : C

Despite Lemma 9, MIL does not have the subformula property, as mentioned in Section

2.2.5.

2.4 Entailment

We complete the deductive system by axiomatizing an entailment relation, $, on the terms of

type T. For comparison, a deductive calculus for Montague (1973) is presented in Gallin (1975).

2.4.1 Higher-Order Logic

The following axioms are simply those of intuitionistic typed higher-order logic (cf. Jacobs 1999,

Lambek and Scott 1988).

1. � $ �

2. � $  t : A , for x : A (and similarly for simultaneous substitution, if desired).
�rt{xs $  rt{xs

3. � $   $ ✓

� $ ✓

4. J $ x “A x, for any x : A.

5. � ^ x “A x
1 $ �rx1{xs, for any x, x

1
: A.

6. @x.fpxq “B gpxq %$ f “pAÑBq g, for any x : A and f, g : A Ñ B.

7. � ô  %$ � “T  , for any �, : T.

8. J $ p�x.tqx1 “B trx1{xs, for any t : B, x
1
: A.

9. J $ p�x.fpxqq “pAÑBq f , for any f : A Ñ B, x : A.

10. � $ J

15



11. K $ �

12. � $  ^ ✓ iff � $  and � $ ✓.

13. � _  $ ✓ iff � $ ✓ and  $ ✓.

14. � $  ñ ✓ iff � ^  $ ✓.

15. � | Dx.� $  iff �, x : A | � $  .

16. � | � $ @x. iff �, x : A | � $  .

2.4.2 S4 Modal Logic

The following are the standard S4 axioms, adapted to the present approach. The author consulted

Awodey et al. (2014).

(ML1). x : 5A | �pxq $  pxq
x : 5A | 2�prxsq $ 2 prxsq

(ML2). x : 5A | 2�prxsq $ �pxq

(ML3). x : 5A | 2�prxsq $ 22�prrxssq

(ML4). x : 5A | 2�prxsq ^ 2 prxsq $ 2p� ^  qprxsq

(ML5). x : 5A | J $ 2J

2.4.3 S4 Modal Type Theory

The following axioms are suggested by the intended semantics (cf. Manes 1976, axioms for a

Kleisli triple). The principle MTT2 appears in Gallin (1975).

(MTT1). J $ pqrxs “5A x, for all variables x : 5A.

(MTT2). J $qptprxsq “A tpxq, for all x : 5A | t : A.

(MTT3). J $ptprpsprxsqsq “5C p tpps1prrxss, ..., psnprrxssq, where x : 5A | sipxq : Bi, for each i

p0 § i § nq, and y : 5B | tpyq : C.

Convention 10. We may write ‘� | � holds’ for an assertion of � | J $ �.
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Definition 11. A theory of MIL consists of a set T “ Tc

î
Te, where Tc is a set of constants

tc1 : A1, c2 : An, ...u and Te is a set of entailments t�1 | �1 $  1,�2 | �2 $  2, ...u.

2.5 Derivable Principles

Proposition 12. The following principles are derivable:

• (Necessitation).
x : 5A | J $ �pxq

x : 5A | J $ 2�prxsq
• (K).

x : 5A | 2p� ñ  qprxsq $ 2�prxsq ñ 2 prxsq

• (Converse Barcan Principle).

x : 5A, y : 5B | �px, yq : T
x : 5A | 2p@y.�qprxsq $ @y.2�prx, ysq

• (Persistence of Identity).

x : 5A, x1
: 5A | x “5A x

1 $ 2prxs “5A rx1sq

Proof.

• (Necessitation). Follows using ML5 and ML1.

• (K). Follows using ML4 and ML1.

• (Converse Barcan Principle). Follows using ML1.

• (Persistence of Identity). Follows using Necessitation.

Lemma 13 (5 Preserves Composition). Given y1 : B1, ..., yn : Bn | tpyq : C and x : A | s1pxq :

B1, ...,x : A | snpxq : Bn, the equality

x : 5A | 5ptpsrxsqq “5C 5ptr5psrxsqsq
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holds.

Proof.

5ptpsrxsqq ” pptpspqrxsqq

“5C ptpq pspqrrxssqq pMTT2q

“5C ptpqrpspqrxsqsq pMTT3q

” 5ptr5psrxsqsq

Lemma 14. Given x : 5A | tpxq : B, the equality

x : 5A | 5tr�rx1s, ..., �rxnss “5B ptrxs

holds.

Proof.

5tr�rx1s, ..., �rxnss ” ptpqr�rx1ss, ..., qr�rxnssq

” ptpqrprx1ss, ..., qrprxnssq

“5C ptpq prrx1ss, ..., q prrxnssq pMTT3q

“5C ptprx1s, ..., rxnsq pMTT2q

Theorem 15 (Substitution of Rigid Designators in Modal Contexts). Let

x1 : 5A1, ..., xm : 5Am | sipxq : 5Bi

for each i p1 § i § nq. Then ‘pcommutes with substitution of s’ iff ‘s respects �’. That is,

p5sir�A1rx1s, ..., �Amrxmssq “55B �Birsis for all i
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iff

pptrspxqsq “5C ptpsrxsq, for each y1 : 5B1, ..., y : n : 5Bn | t : C .

Proof. (ñ). Assume p5sir�A1rx1s, ..., �Amrxmssq “55B �Birsis for each i. Then

pptrssq “5C 5tr�rs1s, ..., �rsnss pLemma 14q

“5C 5tr5s1r�rx1s, ..., �rxmss, ..., 5snr�rx1s, ..., �rxmsss pAssumptionq

” 5tr5sr�rx1s, ..., �rxmsss pAssociativity of substitutionq

“5C 5ptpsr�rx1s, ..., �rxmssqq pLemma 13q

“5C ptpsrxsq pLemma 14q

(). Assume pptrspxqsq “5C ptpsrxsq. Then

5sir�A1rx1s, ..., �Amrxmss “55B psirxs pLemma 14q

” ppyipsrxsqq

“55B ppryisqpspxqq pAssumptionq

” �rsis

Corollary 16. Let x1 : 5A1, ..., xm : 5Am | si : 5Bi for each i p1 § i § nq. Assume ‘s respects

�’, i.e.

p5sir�A1rx1s, ..., �Amrxmssq “55B �Birsis for all i .

Then, for each y1 : 5B1, ..., yn : 5Bn | � : T,

2�rspxqs “T 2�psrxsq .
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Proof. Assume p5sir�A1rx1s, ..., �Amrxmssq “55B �Birsis. Then, by the preceding Theorem 15,

pptrspxqsq “5C ptpsrxsq. Resultingly,

2�rspxqs ” pJ “5T p�rspxqs

“T pJ “5T p�psrxsq pAssumptionq

” 2�psrxsq
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Chapter 3

Categorical Semantics of MIL

Below, we develop a categorical semantics for the system MIL of the previous chapter. This

combines the categorical semantics for predicate S4 modal logic (first formulated by Reyes and

Zolfaghari 1991) and the semantics of simple type theory with a comonadic modality (Bierman

and de Paiva 1999). The result is an interpretation of MIL using a comonad on a topos. This

interpretation represents a slightly simplified version of the semantics of Awodey, Buchholtz,

and Zwanziger (2016).

This framework abstracts away from contingent features of the traditional Kripke and Boolean-

valued semantics for Montague’s logic, such as the use of possible worlds. The presence of a

comonad turns out to be the essential, common structure in these examples. The concept of a

monad has recently been employed in natural language semantics in order to modularly integrate

more complex semantic representations while maintaining the principle of compositionality (c.f.

Shan 2002, Barker 2002). Comonads can serve a similar function, though with a different flavor.

The implicit presence of a comonad in MIL suggests that they are as fundamental to natural

language semantics as are monads.

Section 1 recalls key facts concerning comonads. Section 2 gives the categorical semantics

of MIL, and Section 3 proves the soundness of the deductive calculus of Chapter 2 with respect

to that semantics.
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3.1 Categorical Preliminaries

Before proceeding to interpret of MIL, we review the required categorical notions.

In what follows, we will freely reference the structures existing in any topos that are used in

the standard semantics of higher order logic. Definitions for such structures are provided only in

the context of the examples. The general definitions are available in, inter al., Lambek and Scott

(1986), Mac Lane and Moerdijk (1992), and Johnstone (2002, Part D).

3.1.1 Comonads

In the rest of the current work, we will make extensive use of the comonad concept.

Comonadic Modeling

Comonads (and their dual, monads) arose as fundamental structures in category theory. Since

Moggi (1991), however, monads have also played a significant role in functional programming,

and now natural language semantics (Shan 2002, Barker 2002). In natural language seman-

tics (as in functional programming), monads offer a way of enriching semantic representations

without losing compositionality. For instance, one may wish to take into account not just the

truth-conditional content of expressions, but also the effect of their use on a given listener’s

knowledge state. By contrast (at least in computer science) comonads have potential to regiment

a semantics involving “context-dependence” (Uustalu and Vene 2008), that is, extraneous inputs

rather than extraneous outputs. This is exactly what we see in MIL, where terms depend on

‘intensional’ types (of type 5A, say), not just ‘extensions’ (of type A). It was one of Montague’s

key insights that the meaning of phrases such as “former senator” is calculated not based on the

extension of “senator”— the set of those currently serving as senator—but rather on the intension

of “senator”—the information about who served as senator at any given time. In MIL, “former”

is thus interpreted as a term of type 5pE Ñ Tq Ñ E Ñ T, rather than pE Ñ Tq Ñ E Ñ T.
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From Comonads to Kleisli Cotriples

We first recall the categorical definition of a comonad, then delineate its relation to the “Kleisli

Cotriple” definition more conventional in computer science.

Definition 17. A comonad on a category C consists of a functor 5 : C Ñ C and natural

transformations " : 5 Ñ idC and � : 5 Ñ 55 such that, for each A P C, the diagrams of Figures

3.1 and 3.2 commute.

5A

5A 55A 5A

�A
id5A id5A

"5A 5"A

Figure 3.1: The Left Counit Law (Lefthand Triangle) and the Right Counit Law (Righthand

Triangle)

5A 55A

55A 555A

�A

�A

5�A

�5A

Figure 3.2: Coassociativity Law

In what follows, we will only be concerned with comonads whose underlying functors pre-

serve finite limits. Such functors are called left exact or finite limit-preserving. Henceforth,

5 is assumed to be such a finite limit-preserving comonad. The isomorphism x5⇡1, ..., 5⇡ny´1
:

5A1ˆ ...ˆ5An – 5pA1ˆ ...ˆAnq may be denoted by �A.1 With context, we may write simply �.

1We include the ‘n “ 0’ case: the isomorphism !´1 : 1 Ñ 51 may be denoted by �¨ (where ¨ denotes the empty

list, as always).
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In order to interpret the MIL rule Intension, we introduce a defined operation, the ‘Kleisli

lift’, on morphisms with domain of the form 5A1 ˆ ... ˆ 5An. In computer science, it is more

common to define a comonad in terms of the counit and Kleisli lift and axioms. Here, we instead

check that these axioms follow from our definition.

Definition 18 (Kleisli Lift, c.f. Manes 1976). Let 5A1 ˆ ... ˆ 5An
f›Ñ B pn • 0q. Then

5A1 ˆ ... ˆ 5An
f˚
›Ñ 5B ,

the Kleisli lift of f , is given by the composite

5A1 ˆ ... ˆ 5An
�A1ˆ...ˆ�An›››››››Ñ 55A1 ˆ ... ˆ 55An

�– 5p5A1 ˆ ... ˆ 5Anq 5f›Ñ 5B .

The following lemma will be called upon to prove soundness. Its proof is standard, but most

details are nonetheless indicated.

Lemma 19 (Kleisli Cotriple ‘Axioms’, c.f. Manes 1976).

(KC1). "˚
A “ id5A for each A P E .

(KC2). "Bf˚ “ f for each f : 5A1 ˆ ... ˆ 5An Ñ B.

5A1 ˆ ... ˆ 5An 5B

B

f˚

f "B

Figure 3.3: Cotriple Axiom 2

(KC3). g
˚xf˚

1 , ..., f
˚
ny “ pgxf˚

1 , ..., f
˚
nyq˚ for each fi : 5A1 ˆ ... ˆ 5Am Ñ Bi p1 § i § nq and

g : 5B1 ˆ ... ˆ 5Bn Ñ C.

Proof.
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1. ("˚
A “ id5A). The desired equality follows straightforwardly from the Right Counit Law. It

is established as follows:

"
˚
A “ 5"A ˝ � ˝ �A

“ 5"A ˝ �A p� “ idq

“ id5A pRight Counit Lawq

2. ("Bf˚ “ f ). The proof makes use of the Left Counit Law. Before proving the desired

equality for arbitrary n, the more perspicuous proof for n “ 1 is presented for reference.

Given f : 5A Ñ B, we have:

"B ˝ f
˚ “ "B ˝ 5f ˝ � ˝ �A

“ "B ˝ 5f ˝ �A p� “ idq

“ f ˝ "5A ˝ �A pNaturality of "q

“ f pLeft Counit Lawq

Note that, due to product-preservation, any arrow 5A1 ˆ ... ˆ 5An
f›Ñ B is ‘essentially’ an

arrow with form 5X Ñ B, namely

5pA1 ˆ ... ˆ Anq �´1

– 5A1 ˆ ... ˆ 5An
f›Ñ B .

Though daunting, the proof for arbitrary n is, ‘essentially’, a reduction to the proof for

n “ 1, applied to this f�´1.

It will make use of the following fact:

Sublemma 20. The following diagram commutes:
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5A1 ˆ ... ˆ 5An, 55A1 ˆ ... ˆ 55An

5p5A1 ˆ ... ˆ 5Anq

5pA1 ˆ ... ˆ Anq 55pA1 ˆ ... ˆ Anq

�A1ˆ...ˆ�An

x5⇡A1 ,...,5⇡Any´1p“�Aq

x5⇡5A1
,...,5⇡5Anyp“�´1

5A1,...,5An
q

�A1ˆ...ˆAn

x55⇡A1 ,...,55⇡Any

5x5⇡A1 ,...,5⇡Anyp“5p�´1
A qq

Proof. Diagram chase using the naturality of � and the product-preservation of 5.

We return to the main proof.

"B ˝ f
˚ “ "B ˝ 5f ˝ �5A ˝ p�A1 ˆ ... ˆ �Anq

“ f ˝ "5A1ˆ...ˆ5An ˝ �5A ˝ p�A1 ˆ ... ˆ �Anq pNaturality of "q

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ �5A ˝ p�A1 ˆ ... ˆ �Anq pNaturality of ",� isoq

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ �5A ˝ x55⇡A1 , ..., 55⇡Any ˝ �A1ˆ...ˆAn ˝ x5⇡A1 , ..., 5⇡Any´1

pSublemma 20q

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ �5A ˝ x55⇡A1 , ..., 55⇡Any ˝ �A1ˆ...ˆAn ˝ �A

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ �5A ˝ x5⇡5A1 , ..., 5⇡5Any ˝ 5x5⇡A1 , ..., 5⇡Any ˝ �A1ˆ...ˆAn ˝ �A

pSublemma 20q

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ �5A ˝ �´1
5A ˝ 5p�´1

A
q ˝ �A1ˆ...ˆAn ˝ �A

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ 5p�´1
A

q ˝ �A1ˆ...ˆAn ˝ �A

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ 5p�Aq ˝ 5p�Aq´1 ˝ �A1ˆ...ˆAn ˝ �A

“ f ˝ �´1
A

˝ "5pA1ˆ...ˆAnq ˝ �A1ˆ...ˆAn ˝ �A

“ f ˝ �´1
A

˝ �A pRight Counit Lawq

“ f

26



3. (g˚xf˚
1 , ..., f

˚
ny “ pgxf˚

1 , ..., f
˚
nyq˚). The proof makes use of the Coassociativity Law. We

give only more perspicuous proof for m “ n “ 1. Given f : 5A Ñ B and g : 5B Ñ C,

we have:

g
˚ ˝ f

˚ ” 5g ˝ � ˝ �B ˝ 5f ˝ � ˝ �A

“ 5g ˝ �B ˝ 5f ˝ �A

“ 5g ˝ 55f ˝ �5A ˝ �A

“ 5g ˝ 55f ˝ 5�A ˝ �A pCoassociativityq

“ 5pg ˝ 5f ˝ �Aq ˝ �A

“ 5pg ˝ 5f ˝ � ˝ �Aq ˝ � ˝ �A

“ 5pg ˝ f
˚q ˝ � ˝ �A

“ pg ˝ f
˚q˚

3.2 Interpretation

For the remainder of the chapter, let E be a topos, with subobject classifier JE : 1E Ñ ⌦E .

Convention 21. To denote a monomorphism m with codomain B, we may write m ⇢ B, sup-

pressing mention of the domain of m.

Definition 22. Let � : X Ñ ⌦E . Then we write t�u to denote �˚pJEq.

Making our first use of Convention 21, Definition 22 may be distilled to the pullback diagram

t�u 1E

X ⌦E

!

{
JE

�

.
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Definition 23. Given �, : X Ñ ⌦E , let

� §X  ô t�u §X t u ,

i.e. ô there is a commutative diagram

t�u t u

X

.

We are now equipped to interpret MIL. We extend the usual categorical interpretation of

higher-order logic (c.f. Jacobs 1999, Lambek and Scott 1988) to our setting. This interpretation

is presented in the ‘denotational style’, and is thus not relativized to variable assignments or

possible worlds. (Indeed, interpretations of MIL will not in general involve possible worlds.

C.f. Section 4.3.)

Definition 24. Let T be a theory of MIL. An interpretation of T consists of:

• a topos E ,

• a finite limit-preserving comonad 5 : E Ñ E ,

• an object E of E ,

• an interpretation function J´K that takes types to objects of E and terms derivable from T

to arrows of E , with the following specifications:

The iterpretation function J´K is recursively defined on types by:

• JE K “ E

• JT K “ ⌦E

• JA Ñ BK “ JBKJAK

• J5AK “ 5JAK
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The interpretation function J´K takes each term

� | t : B

to an arrow

J� | t : BK : J�K Ñ JBK

in E , where J�K abbreviates JA1K ˆ ...ˆ JAnK if � abbreviates x1 : A1, ..., xn : An and the empty

product (i.e. the terminal object) 1E if � is empty. We may abbreviate J� | t : BK to JtK when the

context is clear. This action of J´K on terms is given recursively by:

• The term �, x : A,� | x : A is assigned to the obvious projection

J�K ˆ JAK ˆ J�K ⇡›Ñ JAK .

• Each constant ¨ | c : A of Tc is assigned to an arrow JcK : 1E Ñ JAK.

• If ¨ | c : A is a constant, J� | c : AK is the composite

J�K !›Ñ 1E
J¨ | cK›››Ñ JAK .

‚ If �, x : A | t : B is a term, then J� | �x.t : A Ñ BK is

�JAKJtK : J�K Ñ JBKJAK
,

where �JAKJtK denotes the exponential transpose of

J�K ˆ JAK JtK›Ñ JBK .

‚ If � | t : BA and � | u : A are terms, then JtuK is the composite

J�K xJtK,JuKy›››››Ñ JBKJAK ˆ JAK
evalJBK››››Ñ JBK .

• If � | t : T and � | u : T are terms, then Jt ^ uK is the composite

J�K xJtK,JuKy›››››Ñ ⌦E ˆ ⌦E
^E››Ñ ⌦E ,

and similarly for _ and ñ.
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• If � | t : T is a term, then J tK is

J�K JtK›Ñ ⌦E
 E››Ñ ⌦E .

• JJK “ JE : 1E Ñ ⌦E and JKK “ KE : 1E Ñ ⌦E .

• If �, x : A | t : T is a term, then J� | @x.t : T K is the composite

J�K
�JAKJtK››››Ñ ⌦

JAK
E

@JAK››Ñ ⌦E ,

and similarly for D.

• If � | t : A and � | u : A are terms, then Jt “A uK is the composite

J�K xJtK,JuKy›››››Ñ JAK ˆ JAK
�JAK››Ñ ⌦E ,

where �JAK is defined as the characteristic arrow of �JAK :” xidJAK, idJAKy.

• If x1 : 5A1, ..., xn : 5An | tpx1, ..., xnq : B is a term and � | s1 : 5A1, ...,� | sn : 5An are

terms, then JptrssK is the composite

J�K xJs1K,...,JsnKy›››››››Ñ J5A1K ˆ ... ˆ J5AnK
Jtpx1,...,xnqK˚
››››››››Ñ 5JAK .

• If � | t : 5A is a term, then JqtK is the composite

J�K JtK›Ñ 5JAK
"JAK››Ñ JAK .

• If � | � $  is an entailment in Te, then J�K §J�K J K, where §J�K is as indicated in

Definition 23.

Remark 25. Note that J´K is defined by induction on derivations. We do not know a priori that it

is well defined on terms, for the same term may arise from multiple derivations via the Intension

rule. For instance, the term

¨ | pf rcs : 5B

may equally well be derived via Intension from

¨ | c : 5A and x : 5A | fpxq : B
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or

¨ | c : 5A, ¨ | d : 5A1
, and x : 5A, y : 5A1 | fpxq : B .

The interpretations of these derivations are

Jx : 5A | fpxq : BK˚ ˝ JcK

and

Jx : 5A, y : 5A1 | fpxq : BK˚ ˝ xJcK, JdKy ,

respectively, whose equality one may doubt.

Intension is plainly the only way to generate multiple derivations for the same term. To

demonstrate that J´K is well-defined on terms, then, it is sufficient to show that such Intension

derivations of the same term are assigned the same interpretation. This is deferred to Section

3.2.1.

Interpretation of Box Since 2�rxs is defined in MIL, rather than taken as primitive, it is of

course assigned an interpretation by J´K. This interpretation will be shown to be equal to the

composite

J�K J p �rxsK›››››Ñ 5⌦E
�5JE›››Ñ ⌦E ,

an identity which will aid the later proof of soundness.

The proof will use the next lemma.

Lemma 26. The following is a pullback square:

1E ⌦E

⌦E ⌦E ˆ ⌦E .

JE

JE

{
�⌦E

xid,JE˝!⌦E y
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Proof. Assume f, g : X Ñ ⌦E are such that xid,JE˝!⌦E y ˝ f “ �⌦E ˝ g. Then we have

xf,JE˝!Xy “ xf,JE˝!⌦E ˝ fy

“ xid,JE˝!⌦E y ˝ f

“ �⌦E ˝ g pAssumptionq

“ xid, idy ˝ g

“ xg, gy

.

Therefore !X is such that JE˝!X “ f and JE˝!X “ g. By terminality of 1E , it is the unique such

map.

Lemma 27. If x1 : 5A1, ..., xn : 5An | �px1, ..., xnq : T is a term and � | s1 : 5A1, ...,� | sn : 5An

are terms, then J2�rssK is the composite

J�K J p �rssK››››Ñ 5⌦E
�5JE›››Ñ ⌦E .

Proof. Unwinding the definition of J2�rssK and applying some basic manipulations yields the
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following:

J2�rssK “ JpJ “5T p�rssK

“ �5⌦E ˝ xJpJK, Jp�rssKy

“ �5⌦E ˝ xJJK˚
, Jp�rssKy

“ �5⌦E ˝ xpJ¨ | JK˝!�q˚
, Jp�rssKy

“ �5⌦E ˝ xpJE˝!�q˚
, Jp�rssKy

“ �5⌦E ˝ xJ˚
E˝!�, Jp�rssKy p! commutes with ˚q

“ �5⌦E ˝ xJ˚
E˝!5⌦E ˝ Jp�rssK, Jp�rssKy

“ �5⌦E ˝ xJ˚
E˝!5⌦E , id5⌦E y ˝ Jp�rssK

“ �5⌦E ˝ x5JE ˝ �¨˝!5⌦E , id5⌦E y ˝ Jp�rssK

“ �5⌦E ˝ x5JE ˝ 5!⌦E , id5⌦E y ˝ Jp�rssK

“ �5⌦E ˝ x5JE ˝ 5!⌦E , 5 id⌦E y ˝ Jp�rssK

.

It thus suffices to show that �5⌦E ˝ x5JE ˝ 5!⌦E , 5 id⌦E y “ �5JE . This is exhibited by the following

diagram:

51E 5⌦E 1E

5⌦E 5⌦E ˆ 5⌦E ⌦E .

5JE

5JE

{
5�⌦E p“�5⌦E q

!

{
JE

x5JE˝5!⌦E ,5 id⌦E y
�5⌦E

The left square is a pullback by Lemma 26 and the pullback-preservation of 5. The right square

is a pullback by the definition of �5⌦E . Thus, by the two-pullbacks lemma, the outer rectangle is

a pullback, meaning �5⌦E ˝ x5JE ˝ 5!⌦E , 5 id⌦E y “ �5JE .

Lemma 27 provides a sense in which the arrow �5JE : 5⌦E Ñ ⌦E interprets the ‘intensional

operator’ 2. This categorical interpretation of 2 is derived from Reyes and Zolfaghari (1991).
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3.2.1 Well-Definedness of J´K

We return to the issue, raised in Remark 25, of showing that J´K is well-defined on terms.

Since the rule Intension is the only way to generate multiple derivations for the same term,

the key step is to show that such Intension derivations of the same term are assigned the same

interpretation.

Our approach will be based on the idea that, given premises for Intension s, t and s
1
, t

1 such

that ptrss “ pt1rs1s, there must be a third set of Intension premises, s2
, t

2, such that s, t and s
1
, t

1

are both obtainable from s
2
, t

2 (up to renaming of variables) by a rewriting process involving

appropriate weakenings, contractions, and permutations. Then, provably, the derivations for

p trss and p t
2rs2s, as well as the derivations for p t

2rs2s and p t
1rs1s, are assigned the same

interpretation.

In order to proceed, we define this rewriting process.

Definition 28. The set R of reduction sequences is defined recursively as follows:

• For each � | s : 5A and x : 5A | t : B such that s and x are of equal length,

xxs,x, tyy P R .

• (Weakening): If � :” x..., xs,x, tyy P R, x↵ : 5A↵ R x : 5A, and � | s↵ : 5A↵ is a term,

then

� ‚ xxs1, ..., si, s↵, si`1, ...sn, x1, ..., xi, x↵, xi`1, ..., xn, tyy P R .

• (Contraction): If � :” x..., xs1, ..., si, ..., sj, ..., sn, x1, ..., xi, ..., xj, ..., xn, tyy P R, si “ sj ,

and i ‰ j, then

� ‚ xxs1, ..., si, ..., sj´1, sj`1, ..., sn, x1, ..., xi, ..., xj´1, xj`1, ..., xn, trxi{xjsyy P R .

The infix ‚ denotes the concatenation function.

• (Permutation): If � :” x..., xs1, ..., si, ..., sj, ..., sn, x1, ..., xi, ..., xj, ..., xn, tyy P R and i ‰

j, then
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� ‚ xxs1, ..., si´1, sj, si`1, ..., sj´1, si, sj`1, ..., sn,

x1, ..., xi´1, xj, xi`1, ..., xj´1, xi, xj`1, ..., xn, tyy P R .

If � P R, firstp�q “ xs,x, ty, and lastp�q “ xs1
,x

1
, t

1y, then � is a reduction (sequence)

from/of x� | s1
: 5A1

,x
1
: 5A1 | t1

: By to x� | s : 5A,x : 5A | t : By. Furthermore, x� | s : 5A,x :

5A | t : By can be said to be a reduct of x� | s1
: 5A1

,x
1
: 5A1 | t1

: By.

Without further ado, we are ready to state:

Theorem 29. Let D,D
1 be derivations of the same term � | t : B from theory T. Then JDK “

JD1K.

This justifies the notation J� | t : BK.

The proof of Theorem 29 requires us to prove the following statements by simultaneous

induction:

Theorem 29. (Continued).

• (Weakening Lemma). Given � | t : B,

J�, x : A,� | t : BK “ J�,� | t : BK ˝ x⇡�, ⇡�y

• (Contraction Lemma). Given x : A | t : B such that xi “ xj with i † j,

Jx1 : A1, ..., xj´1 : Aj´1, xi : Ai, xj`1 : Aj`1, ...xn : An | t : BK “

Jx : A | t : BK ˝ x⇡1, ..., ⇡j´1, ⇡i, ⇡j`1, ..., ⇡ny

• (Permutation Lemma). Given x : A | t : B,

Jx1 : A1, ..., xi´1 : Ai´1, xj : Aj, xi`1 : Ai`1, ..., xj´1 : Aj´1, xi : Ai, xj`1 : Aj`1, ...xn : An | t : BK “

Jx : A | t : BK ˝ x⇡1, .., ⇡i´1, ⇡j, ⇡i`1, ..., ⇡j´1, ⇡i, ⇡j`1, ..., ⇡ny

• (Reduction Lemma). If x� | s1
: 5B1

,x
1
: 5B1 | t1

: Cy is a reduct of x� | s : 5B,x : 5B | t :

Cy, then JtK˚ ˝ xJs1K, ..., JsnKy “ Jt1K˚ ˝ xJs1
1K, ..., Js1

nKy.
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The proofs of the Weakening, Contraction, and Permutation Lemmas are routine and not

explicitly indicated within the overall proof. The proof of the Reduction Lemma is given last for

readibility.

Proof. We proceed by induction on the depth of � | t : B.

(Base Case). When � | t : B has depth 1, it is either a variable �, x : A,� | x : A or a constant � | c : B.

When � | t : B is �, x : A,� | x : A, its only derivation is

LC1
�, x : A,� | x : A .

For LC1 is the only rule that outputs a variable, and any other application of LC1 yields

a different term. Any two derivations of � | t : B are thus equal to the one provided and

have the same interpretation. When t is a constant, uniqueness of interpretation follows by

similar considerations.

(Inductive Case). We address one of the routine subcases (LC3), and then proceed to the interesting case

(Intension).

(LC3). When � | t : B is � | �x.u : A Ñ C, then its derivation must end

�, x : A | u : C
LC3

� | �x.u : A Ñ C
.

For LC3 is the only rule that outputs a �-term, and any other application of LC3 yields a

different term. Thus, given derivations D,D
1 of �x.u, we have

JDK “ �JAKJuK : JA Ñ CK “ JD1K .

Since u has depth less than �x.u, this JuK is well-defined by inductive hypothesis.

(Intension). When t is pvrus, it must come from the rule Intension, for this is the only rule

that outputs a term starting with the p symbol. Assume without loss of generality that D

is a derivation ending
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� | u1 : 5B1, ..., un : 5Bn u : 5B | vpx1, ..., xnq : C
Intension

� | pvrus : 5C
.

Assume D
1 is a derivation ending

� | u1
1 : 5B1

1, ..., u
1
m : 5B1

m u
1
: 5B1 | v1px1

1, ..., x
1
mq : C

Intension
� | pv1ru1s ” pvrus : 5C

.

As intimated at the outset, we seek, up to renaming of variables, a common reduct u2
,x

2
, v

2

of u1
,x

1
, v

1 and u,x, v. Then

JDK “ JvK˚ ˝xJu1K, ..., JunKy “ Jv2K˚ ˝xJu2
1K, ..., Ju2

l Ky “ Jv1K˚ ˝xJu1
1K, ..., Ju1

lKy “ JD1K ,

where the second and third equalities use the inductive hypothesis of the Reduction Lemma.

This string of equalities will demonstrate that JDK “ JD1K, and, indeed, complete the

proof of well-definedness. Note that JvK˚ ˝ xJu1K, ..., JunKy, Jv2K˚ ˝ xJu2
1K, ..., Ju2

l Ky, and

Jv1K˚ ˝ xJu1
1K, ..., Ju1

lKy are well-defined by inductive hypothesis.

Let x2
1 : 5B2

1 , ..., x
2
l : 5B2

l | v2px2q : C be the term obtained from v by replacing each rep-

etition of a variable with a fresh variable, with context x2
1 : 5B2

1 , ..., x
2
l : 5B2

l the ordering

of the variables of v2 by occurrence from left to right. Let � | u2
i : 5B2

i be � | uj : 5Bj if

x
2
i “ xj or if x2

i replaced xj . This defines the terms u2, all of lesser depth than t, since u

all have lesser depth than t. Furthermore, v2 has the same depth as v, thus less than t. The

other required property of xu2
,x

2
, v

2y is shown by the following sublemma:

Sublemma 30. x� | u2
: 5B2

,x
2
: 5B2 | v2

: Cy is a reduct of both x� | u1
: 5B1

,x
1
: 5B1 | v1

: Cy

and x� | u : 5B,x : 5B | v : Cy, up to renaming of variables.

Proof. Deferred to later work. (Note: see insert on following page for the proof. -CZ, 6/2019).

It only remains to show the Reduction Lemma. Again, this technically occurs as part of our

ongoing simultaneous induction on the depth of t.
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Sublemma 30: Insert

Colin Zwanziger

June, 2019

The following is an insert for display following page 37 of the masters thesis

Zwanziger, C. (2017). Montague’s Intensional Logic as Comonadic Type Theory. M.S. thesis.
Carnegie Mellon University. Pittsburgh, USA.

restating and providing the omitted proof of the technical Sublemma 30 of that work. Continuity
of definitions and conventions are assumed.

Sublemma 30. x� | u2 : 5B2,x2 : 5B2 | v2 : Cy is a reduct of both x� | u1 : 5B1,x1 : 5B1 | v1 : Cy
and x� | u : 5B,x : 5B | v : Cy, up to renaming of variables.

Proof. That x� | u2 : 5B2,x2 : 5B2 | v2 : Cy is a reduct of x� | u : 5B,x : 5B | v : Cy is
apparent from the definition of x� | u2 : 5B2,x2 : 5B2 | v2 : Cy. A reduction sequence from
x� | u2 : 5B2,x2 : 5B2 | v2 : Cy to x� | u : 5B,x : 5B | v : Cy is obtained by first traversing the
term v2, generating entries of the reduction sequence via the rule Contraction until the term v is
recovered, followed by searching the list u2, generating entries of the reduction sequence via the
rule Weakening until all entries of list u are present (though not necessarily in the order given by
u). Finally, one unscrambles the scrambled version of the list u just obtained, generating entries
of the reduction sequence via the rule Permutation, until u is recovered.

To complete the proof, we show that x� | u2 : 5B2,x2 : 5B2 | v2 : Cy is a reduct of
x� | u1 : 5B1,x1 : 5B1 | v1 : Cy, up to renaming of variables. Let x� | u3 : 5B3,x3 : 5B3 | v3 : Cy
be the result of applying the same procedure to x� | u1 : 5B1,x1 : 5B1 | v1 : Cy that we applied to
x� | u : 5B,x : 5B | v : Cy to obtain x� | u2 : 5B2,x2 : 5B2 | v2 : Cy. By the same argument
that showed x� | u2 : 5B2,x2 : 5B2 | v2 : Cy is a reduct of x� | u : 5B,x : 5B | v : Cy, we have
that x� | u3 : 5B3,x3 : 5B3 | v3 : Cy is a reduct of x� | u1 : 5B1,x1 : 5B1 | v1 : Cy. It thus suffices
to show that

x� | u3 : 5B3,x3 : 5B3 | v3 : Cy « x� | u2 : 5B2,x2 : 5B2 | v2 : Cy ,

where « denotes equality up to renaming of variables.
This is shown by induction on the structure of v as a term of the auxiliary language MIL1, as

follows:

(Base Cases). There are two subcases.
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‚ When v ” c, a constant (inclusive of J or K), we have

pc ” pcrrus{xs ” pcrus ” pvrus ” pv1ru1s ” pv1rru1s{x1s .

Thus, c ” v1rru1s{x1s. For this to be the case, none of the variables in x1 can actually
appear in v1, and futhermore, we must have v1 ” c. Consequently,

x� | u3 : 5B3,x3 : 5B3 | v3 : Cy “ x¨, ¨ | c : Cy “ x� | u2 : 5B2,x2 : 5B2 | v2 : Cy .

‚ When v ” xi, a variable, we have

pruis ” pxirrus{xs ” pxirus ” pvrus ” pv1ru1s ” pv1rru1s{x1s .

Thus, ruis ” v1rru1s{x1s. For this to be the case, we must have v1 ” x1
j for some

variable x1
j such that u1

j “ ui. (We cannot have v1 ” ruis, as ruis is not derivable
from Tc.) Consequently,

x� | u3 : 5B3,x3 : 5B3 | v3 : Cy “ x� | u1
j : 5B1

j, x
1
j : 5B1

j | x1
j : 5B1

jy
« x� | ui : 5Bi, xi : 5Bi | xi : 5Biy
“ x� | u2 : 5B2,x2 : 5B2 | v2 : Cy .

(Inductive Cases). In the interest of concision, we treat select and representative cases (in rough order of
difficulty).

‚ We cannot have v ” rws, as v would in this case not be derivable from Tc.
‚ When v ”  �, a negation, we have

p �rrus{xs ” pvrrus{xs ” pvrus ” pv1rus ” pv1rrus{xs .

Thus,  �rrus{xs ” v1rrus{xs. For this to be the case, we clearly must have v1 ”  �1

for some �1, so �rrus{xs ” �1rrus{xs. Therefore p �rrus{xs ” p �1rrus{xs. By
inductive hypothesis, then,

x� | u3,� : 5B3,�,x3,� : 5B3,� | �3 : Cy « x� | u2,� : 5B2,�,x2,� : 5B2,� | �2 : Cy .

Furthermore, it is clear from the description of p �q3 that

x� | u3 : 5B3,x3 : 5B3 | p �q3 : Cy ” x� | u3,� : 5B3,�,x3,� : 5B3,� | p�3q : Cy ,

So, finally, we have

x� | u3 : 5B3,x3 : 5B3 | v3 : Cy ” x� | u3 : 5B3,x3 : 5B3 | p �q3 : Cy
” x� | u3,� : 5B3,�,x3,� : 5B3,� |  p�3q : Cy
« x� | u2,� : 5B2,�,x2,� : 5B2,� |  p�2q : Cy
” x� | u2 : 5B2,x2 : 5B2 | p �q2 : Cy
” x� | u2 : 5B2,x2 : 5B2 | v2 : Cy ,

where the central equation uses the identity we established using the inductive hy-
pothesis. The cases for p and q are identical.
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‚ When v ” � ^  , a conjunction, we have

pp� ^  qrrus{xs ” pvrrus{xs ” pvrus ” pv1rus ” pv1rrus{xs .

Thus, p� ^  qrrus{xs ” v1rrus{xs. For this to be the case, we clearly must have
v1 ” �1 ^  1 for some �1, 1. Then

�rrus{xs ^  rrus{xs ” p� ^  qrrus{xs
” v1rrus{xs
” p�1 ^  1qrrus{xs
” �1rrus{xs ^  1rrus{xs ,

so �rrus{xs ” �1rrus{xs and rrus{xs ”  1rrus{xs. Therefore p�rrus{xs ” p�1rrus{xs
and p rrus{xs ” p 1rrus{xs. By inductive hypothesis, then,

x� | u3,� : 5B3,�,x3,� : 5B3,� | �3 : Cy « x� | u2,� : 5B2,�,x2,� : 5B2,� | �2 : Cy
and

x� | u3, : 5B3, ,x3, : 5B3, |  3 : Cy « x� | u2, : 5B2, ,x2, : 5B2, |  2 : Cy .

The variables of x3,� and x3, (respectively x2,� and x2, ), may not be distinct, so we
choose y3, (resp. y2, ) distinct from x3,� (resp. x2, ) such that

x� | u3, : 5B3, ,y3, : 5B3, | 3ry3, {x3, s : Cy « x� | u3, : 5B3, ,x3, : 5B3, | 3 : Cy
(resp.

x� | u2, : 5B2, ,y2, : 5B2, | 2ry2, {x2, s : Cy « x� | u2, : 5B2, ,x2, : 5B2, | 2 : Cy q.
Then, obviously,

x� | u3, : 5B3, ,y3, : 5B3, |  3ry3, {x3, s : Cy «
x� | u2, : 5B2, ,y2, : 5B2, |  2ry2, {x2, s : Cy .

Furthermore, it is clear from the description of p� ^  q3 that

x� | u3 : 5B3,x3 : 5B3 | p� ^  q3 : Cy «
x� | u3,� ‚ u3, : 5pB3,� ‚ B3, q,x3,� ‚ y3, : 5pB3,� ‚ B3, q | �3 ^  3ry3, {x3, s : Cy ,

and similarly for p� ^  q2. So, finally, we have

x� | u3 : 5B3,x3 : 5B3 | v3 : Cy ” x� | u3 : 5B3,x3 : 5B3 | p� ^  q3 : Cy
« x� | u3,� ‚ u3, : 5pB3,� ‚ B3, q,

x3,� ‚ y3, : 5pB3,� ‚ B3, q | �3 ^  3ry3, {x3, s : Cy
« x� | u2,� ‚ u2, : 5pB2,� ‚ B2, q,

x2,� ‚ y2, : 5pB2,� ‚ B2, q | �2 ^  2ry2, {x2, s : Cy
« x� | u2 : 5B2,x2 : 5B2 | p� ^  q2 : Cy
” x� | u2 : 5B2,x2 : 5B2 | v2 : Cy ,
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where the central equation uses the identities we established using the inductive hy-
pothesis. The cases for _ and ñ are identical, and those for functional application
and “ essentially similar.
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(Base Case). Trivial

(Inductive Case). When t has depth n ` 1, we must induct additionally on the structure of

R, the set of reduction sequences.

(Base Case): In the case of � “ xxs1
,x

1
, t

1yp“ xs,x, tyqy, i.e. when � is a reduction of

x� | s1
: 5B1

,x
1
: 5B1 | t1

: Cy to itself, JtK˚ ˝ xJs1K, ..., JsnKy “ Jt1K˚ ˝ xJs1
1K, ..., Js1

nKy

holds trivially.

(Weakening): If � is obtained by the clause Weakening of Definition 28, then we have

⌧ “ xxs1
,x

1
, t

1y, ..., xq1, ..., qn, y1, ..., yn, ryy

such that

� ” ⌧ ‚ xxq1, ..., qi, q↵, qi`1, ..., qn, y1, ..., yi, y↵, yi`1, ..., yn, ryp“ xs,x, tyqy .

By inductive hypothesis, Jt1K˚ ˝ xJs1
1K, ..., Js1

nKy “ JrK˚ ˝ xJq1K, ..., JqnKy. It thus suf-

fices to show that JrK˚ ˝ xJq1K, ..., JqnKy “ JrK˚ ˝ xJq1K, ..., JqiK, Jq↵K, Jqi`1K, ..., JqnKy.

This is established as follows:

JrK˚ ˝ xJq1K, ..., JqnKy “ JrK˚ ˝ x⇡1, ..., ⇡ny ˝ xJq1K, ..., JqiK, Jq↵K, Jqi`1K, ..., JqnKy

“ pJrK ˝ x⇡1, ..., ⇡nyq˚ ˝ xJq1K, ..., JqiK, Jq↵K, Jqi`1K, ..., JqnKy

pProjections commute with p´q˚q

“ JrK˚ ˝ xJq1K, ..., JqiK, Jq↵K, Jqi`1K, ..., JqnKy

pWeakening Lemmaq

(Contraction): If � is obtained by the clause Contraction of Definition 28, then we

have

⌧ “ xxs1
,x

1
, t

1y, ..., xq1, ..., qi, ..., qj, ..., qn, y1, ..., yi, ..., yj, ..., yn, ryy

such that
� ” ⌧ ‚ xxq1, ..., qi, ..., qj´1, qj`1, ..., qn,

y1, ..., yi, ..., yj´1, yj`1, ..., yn, rryi{yjsyp“ xs,x, tyqy
.
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By inductive hypothesis, Jt1K˚ ˝ xJs1
1K, ..., Js1

nKy “ JrK˚ ˝ xJq1K, ..., JqnKy. It thus suf-

fices to show that JrK˚˝xJq1K, ..., JqnKy “ Jrryi{yjsK˚˝xJq1K, ..., Jqj´1K, Jqj`1K, ..., JqnKy.

This is established as follows:

JrK˚ ˝ xJq1K, ..., JqnKy “ JrK˚ ˝ xJq1K, ..., Jqj´1K, JqiK, Jqj`1K, ..., JqnKy pqi “ qjq

“ JrK˚ ˝ x⇡1, ..., ⇡j´1, ⇡i, ⇡j`1, ..., ⇡ny ˝ xJq1K, ..., Jqj´1K, Jqj`1K, ..., JqnKy

“ pJrK ˝ x⇡1, ..., ⇡j´1, ⇡i, ⇡j`1, ..., ⇡nyq˚ ˝ xJq1K, ..., Jqj´1K, Jqj`1K, ..., JqnKy

pProjections commute with p´q˚q

“ Jrryi{yjsK˚ ˝ xJq1K, ..., Jqj´1K, Jqj`1K, ..., JqnKy

pContraction Lemmaq

(Permutation): If � is obtained by the clause Permutation of Definition 28, then we

have

⌧ “ xxs1
,x

1
, t

1y, ..., xq1, ..., qi, ..., qj, ..., qn, y1, ..., yi, ..., yj, ..., yn, ryy

such that

� ” ⌧ ‚ xxq1, ..., qi´1, qj, qi`1, ..., qj´1, qi, qj`1, ..., qn,

y1, ..., yi´1, yj, yi`1, ..., yj´1, yi, yj`1, ..., yn, ryp“ xs,x, tyqy
.

By inductive hypothesis, Jt1K˚ ˝ xJs1
1K, ..., Js1

nKy “ JrK˚ ˝ xJq1K, ..., JqnKy. It thus

suffices to show that JrK˚ ˝ xJq1K, ..., JqnKy “ JrK˚ ˝ xJq1K, ..., JqjK, ..., JqiK, ..., JqnKy.

This is established as follows:
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JrK˚ ˝ xJq1K, ..., JqnKy “ JrK˚ ˝ x⇡1, ..., ⇡j, ..., ⇡i, ..., ⇡ny ˝ xJq1K, ..., JqjK, ..., JqiK, ..., JqnKy

“ pJrK ˝ x⇡1, ..., ⇡j, ..., ⇡i, ..., ⇡nyq˚ ˝ xJq1K, ..., JqjK, ..., JqiK, ..., JqnKy

pProjections commute with p´q˚q

“ JrK˚ ˝ xJq1K, ..., JqjK, ..., JqiK, ..., JqnKy

pPermutation Lemmaq

The omitted proof of the technical Sublemma 30 is not included in this thesis, but will be

provided separately at a later date (Note: see insert following page 37 for the proof. -CZ, 6/2019).

The remainder of Chapter 3, including the proof of soundness, assumes of the result stated in

Sublemma 30, and, consequently, Theorem 29 (well-definedness of J´K).

3.3 Soundness

We turn to the proof of soundness of J´K. The following lemma will be required:

Lemma 31 (Substitution Lemma). Let T be a theory of MIL and � | s : A and x : A | t : B deriv-

able from T. Furthermore, let J´K be an interpretation of T. Then Jtrs{xsK “ JtKxJs1K, ..., JsnKy.

Proof. The proof is a routine induction on the structure of t, except for the case where t is derived

from x : A | u : 5A1
,y : 5A1 | v : B. This key step proceeds as follows:
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Jtrs{xsK “ Jpvpru1s, ..., runsqrs{xsK

“ Jpvpru1srs{xs, ..., runsrs{xsqK pAssociativity of marked term substitutionq

“ Jpvpru1rs{xss, ..., runrs{xssqK pDefinition of marked term substitutionq

“ JvK˚ ˝ xJu1rs{xsK, ..., Junrs{xsKy pDefinition of J´Kq

“ JvK˚ ˝ xJu1K ˝ xJs1K, ..., JsnKy, ..., JunK ˝ xJs1K, ..., JsnKyy pInductive hypothesisq

“ JvK˚ ˝ xJu1K, ..., JunKy ˝ xJs1K, ..., JsnKy

“ Jpvpru1s, ..., runsqK ˝ xJs1K, ..., JsnKy pDefinition of J´Kq

“ JtK ˝ xJs1K, ..., JsnKy

Theorem 32 (Soundness). Let T be a theory of MIL and � | � $  derivable from T. Further-

more, let J´K be an interpretation of T. Then J�K §J�K J K.

Proof. The soundness of the higher-order logic principles is standard (given Lemma 31). The

reader may consult, inter al., Jacobs (1999) and Lambek and Scott (1988) for details. We check

a selection of these, as well as each each axiom and inference rule for modal logic and modal

type theory.

Higher-Order Logic

2. ( J�K §J�K J K � | t : A
J�rt{xsK §J�K J rt{xsK

).

Proof of clause.

J�rt{xsK “ J�KxJt1K, ...JtnKy pLemma 31q

§J�K J KxJt1K, ...JtnKy pFunctoriality of pullbackq

“ J rt{xsK pLemma 31q
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8. (JJK §� Jp�x.tqx1 “B trx1{xsK).

The following lemma will be useful in checking a number of succeeding clauses, in addi-

tion to the current one:

Lemma 33. For terms � | s, t : A,

JJK §J�K Jt “A sK

iff

JsK “ JtK

Proof. pñq Assume JJK §J�K Jt “A sK. Then, by pasting together the diagram

J�K

¨ JAK 1

J�K JAK ˆ JAK ⌦

§

⇡2˝§

tJJKup“idq

⇡2

tJs“AtKu

{

�

{
J

xJsK,JtKy

Js“AtK

�JAK

,

it is apparent that xJsK, JtKy “ xJsK, JtKy ˝ id “ p� ˝ ⇡2˝ §q “ pxid, idy ˝ ⇡2˝ §q “

xid ˝⇡2˝ §, id ˝⇡2˝ §y. Therefore JsK “ pid ˝⇡2˝ §q “ JtK.

pq Assume JsK “ JtK. Then � ˝ JsK “ xid, idy ˝ JsK “ xJsK, JsKy “ xJsK, JsKy ˝ id “

xJsK, JsKy ˝ tJJKu “ xJsK, JtKy ˝ tJJKu. Consequently, by the pullback property of the

lefthand square of
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J�K

¨ JAK 1

J�K JAK ˆ JAK ⌦

tJJKup“idq

JsK

⇡2

tJs“AtKu

{

�

{
J

xJsK,JtKp“JsKqy

Js“AtK

�JAK

,

we have JJK §J�K Jt “A sK.

Proof of clause. By Lemma 33, it suffices to show Jp�x.tqx1K “ Jtrx1{xsK. This is estab-

lished as follows:

J�, x1
: A | p�x.tqx1K “ evalpxJ�, x1

: A | p�x.tqK, J�, x1
: A | x1Kyq

“ evalpxJ� | p�x.tqK ˝ ⇡J�K, ⇡JAKyq

“ evalpJ� | p�x.tqK ˆ idq

“ evalp�JAKJ�, x : A | tK ˆ idq

“ J�, x : A | tK

“ J�, x1
: A | trx1{xsK

S4 Modal Logic The validity of the rules for 2 is known, and was established in similar frame-

works as early as Reyes and Zolfaghari (1991). The reader may consult Awodey, Kishida, and

Kotzsch (2014) for further exposition.

The following lemma is used to check each the axioms for 2.
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Lemma 34. Given 5� | � : T, we have tJ2�Ku “ �
˚
J5�Kp5ptJ�Kuqq.

Proof. The proof is given for single-variable contexts. The proof for general contexts is similar.

tJ2�Ku “ t�5J ˝ Jp�Ku pLemma 27q

“ t�5J ˝ J�K˚u

“ t�5J ˝ 5J�K ˝ �J5�Ku

“ �
˚
J5�Kt�5J ˝ 5J�Ku pNaturalityq

“ �
˚
J5�Kp5J�K˚pt�5Juqq pNaturalityq

“ �
˚
J5�Kp5J�K˚p5Jqq pt´u inverse to �´q

“ �
˚
J5�Kp5pJ�K˚pJqqq p5 preserves pullbacksq

” �
˚
J5�Kp5ptJ�Kuqq

Convention 35. In the proofs immediately following, given � : X Ñ ⌦, we write simply � to

mean t�u.

1. J�K §J5�K J K
J2�K §J5�K J2 K

Proof of clause. Assume J�K §J5�K J K. Then J2�K “ �
˚
J5�Kp5J�Kq §J5�K �

˚
J5�Kp5J Kq “

J2 K. The first and third equalities are by Lemma 34 and the second is by functoriality of

5 and �˚
J5�K.

2. J2�K §J5�K J�K
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Proof of clause.

J2�K 5J�K J�K

5J�K 55J�K 5J�K

{

"J�K

�J�K

15J�K

"5J�K

The left square of the preceding diagram commutes by Lemma 34, and its right square

commutes by naturality of ". The bottom of the diagram is id by the Left Counit Law.

Thus, the outside of the diagram exhibits J2�K §J5�K J�K.

3. J2�K §J5�K J22�K

Proof of clause.

J2�K J22�K 5J2�K

5J�K 55J�K

5J�K 55J�K

55J�K 555J�K

{
z

�J�K

�J�K

�J�K

5�J�K

�5J�K

In the preceding diagram, the left and back squares commutes by Lemma 34, the front by

naturality of �, the right by Lemma 34 and functoriality of 5, and the bottom by the Coas-

sociativity Law. The back is a pullback by definition, and the right because 5 preserves
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pullbacks. Thus, the back and right together form a pullback. By chasing the commu-

tativities around the cube, an arrow exhibiting J2�K §J5�K J22�K is obtained from the

universal property of the latter pullback.

4. J2� ^ 2 K §J5�K J2p� ^  qK

Proof of clause.

J2p� ^  qK “ �
˚5pJ� ^  Kq pLemma 34q

“ �
˚5pJ�K ^5J�K J Kq

“ �
˚p5J�K ^55J�K 5J Kq p5 preserves pullbacks.q

“ �
˚5J�K ^5J�K �

˚5J K p�˚ preserves pullbacks.q

“ J2�K ^5J�K J2�K pLemma 34q

“ J2� ^ 2�K

5. JJK §J5�K J2JK

Proof of clause. J2JK “ �
˚
J5�Kp5JJKq ” �

˚
J5�Kp5 idq “ �

˚
J5�Kpidq “ id ” JJK, where the first

equality is by Lemma 34.

S4 Modal Type Theory

1. JJK §J�K Jp qrxs “5A xK, for all variables x : 5A.

Proof of clause. By Lemma 33, it suffices to show JpqrxsK “ JxK. This follows from KC1.

More precisely,
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JpqrxsK “ JqxK˚ ˝ JxK pDefinition of Jp qrxsKq

“ JqxK˚ ˝ idJ5AK pDefinition of JxKq

“ JqxK˚

“ p"JAK ˝ JxKq˚ pDefinition of JqxKq

“ p"JAK ˝ id5JAKq˚ pDefinition of JxKq

“ p"JAKq˚

“ id5JAK pKC1q

“ JxK pDefinition of JxKq

2. JJK §J5�K Jqpt “A tK, for all 5� | t : A.

Proof of clause. By Lemma 33, it suffices to show JqptK “ JtK. This follows from KC2 in

a similar fashion as above.

3. JJK §J5�K Jpptrppsq{xsq “5B pptqrppsq{xsK, where 5� | si : Ai, 0 § i § n, x0 : 5A0, ..., xn :

5An | t : B.

Proof of clause. By Lemma 33, it suffices to show Jpptrppsq{xsqK “ Jpptqrppsq{xsK. This

follows from KC3, again in a similar fashion.

This concludes the proof of Theorem 32 (soundness).
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Chapter 4

Example Interpretations of MIL

The categorical semantics of the previous chapter subsumes as special cases the semantics of

Montague (1973) and a menagerie of other examples. The present chapter indicates how to

recover as instances of the general categorical semantics:

• the semantics of Montague (1973).

• a more general Kripke semantics in which an abitrary preorder replaces the set of ‘possible

worlds’ of Montague (1973).

• the Boolean-valued semantics of Gallin (1975), itself a generalization of Montague (1973).

Other interesting examples have a more topological character (c.f. the sheaf semantics for

modal logic of Awodey and Kishida 2008), though these are not explored here. The examples

presented here are first discussed in Awodey, Buchholtz, and Zwanziger (2016, conference ab-

stract).

Section 1 recalls the relation between adjunctions and comonads. The examples are most

intuitively thought of as comonads arising from adjunctions, and will be presented as such. Sec-

tion 2 addresses the Kripke semantics of MIL, including the classical semantics of Montague

(1973). Section 3 indicates the Boolean- (and indeed Heyting-)valued semantics of MIL.
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4.1 Comonads from Adjunctions

In order to give the comonads below a more intuitive form, we introduce each of them as arising

from an adjunction. The standard connection between comonads and adjunctions is reviewed

here.

Let U : C Ñ D and F : D Ñ C form an adjunction F % U (as pictured) with unit

⌘ : idD Ñ UF and counit " : FU Ñ idC.

C

D

U%F

Then the following facts hold:

The adjunction F % U induces a comonad FU : C Ñ C with counit simply the counit of the

adjunction, " : FU Ñ idC , and comultiplication F⌘U : FU Ñ FUFU .1. Furthermore, every

comonad arises from an adjunction (not necessarily unique).

As a right adjoint, U preserves all small limits. Dually, the left adjoint, F , preserves all small

colimits.

The proofs are available in most textbooks on category theory, including Awodey (2006) and

Mac Lane (1971).

Note that, since the right adjoint U preserves all small limits, the comonad FU preserves

finite limits if the left adjoint F does.

In each of the examples below, we will consider an adjuction between toposes

1Here F⌘U : FU Ñ FUFU is the natural transformation with component F p⌘UAq : FUA Ñ FUFUA at

each A P C
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E

F

f˚%f˚

such that the left adjoint f˚ preserves finite limits. By the foregoing, the induced comonad

f
˚
f˚ : E Ñ E is a finite limit-preserving comonad, appropriate for interpreting MIL.2

4.2 Kripke Semantics for MIL, Including that of Montague

(1973)

We now recover the Kripke semantics of MIL as a special case of our categorical semantics.

4.2.1 The Category Set
W

The resemblance between the semantics Montague offers for his logic and the topos SetW , for a

set W of ‘possible worlds’, was noted in Lambek (1988). It is in fact this category which is used

in our Kripke semantics.

We thus review the structure of SetW for a given set W , referring the reader to, inter al., Mac

Lane and Moerdijk (1992) for full detail.

Throughout, for any category W, we replace Set
W by xW in subscripts.

An object P of SetW is a functor W Ñ Set. Since W is a set, P is determined only by

its action on objects, meaning it is nothing but a W -indexed family of sets pP pwqqpwPW q. An

arrow ↵ : P Ñ Q of SetW is a natural transformation from P to Q. But since W is a set, the
2In topos theory, such adjunctions f˚ % f˚ of toposes, in which the left adjoint f˚ preserves finite limits,

are called geometric morphisms. The categorical approach to the semantics for predicate S4 modal logic that

the current work draws upon (whose general formulation came in Reyes and Zolfaghari (1991)), is formulated in

terms of geometric morphisms, rather than comonads. Compare also the geometric morphism semantics of Awodey,

Kishida, and Kotzsch (2014).
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naturality condition is trivial, meaning that ↵ is nothing but a W -indexed family of functions

p↵w : P pwq Ñ QpwqqpwPW q.

Structures in Set
W are likewise indexed versions of those in Set. Limits, colimits, and

exponentials are all calculated pointwise, meaning, e.g. pP ˆ Qqpwq – P pwq ˆ Qpwq, pP `

Qqpwq – P pwq`Qpwq, 1xW pwq – 1Set – t˚u, where t˚u is some one-element set, and Q
P pwq –

QpwqP pwq.

The subobject classifier ⌦xW is given by ⌦xW pwq – ⌦Set – t0, 1u, where t0, 1u is some

two-element set.

JxW is given by pJxW qw “ JSet, which is itself given by JSetp˚q “ 1. KxW is given by

pKxW qw “ KSet, which is itself given by KSetp˚q “ 0. p^xW qw, p_xW qw, pñxW qw, and p xW qw
are the usual Boolean operations on t0, 1u which exhibit it as an instance of the two-element

Boolean algebra, with 0 the bottom and 1 the top.

Given an object P of SetW , @P : ⌦
P
xW

Ñ ⌦xW is given by

p@P qwpkq “ 1

iff

kpxq “ 1 for all x P P pwq ,

DP : ⌦
P
xW

Ñ ⌦xW is given by

pDP qwpkq “ 1

iff

kpxq “ 1 for all x P P pwq .

The Kronecker delta �P is given by

p�P qwpxx, yyq “ 1

iff

x “ y, where x, y P P pwq .
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4.2.2 Montague’s Semantics

We are finally equipped to recover the semantics of Montague (1973) from a suitable comonad

on Set
W . Intuitively, this comonad ‘gives access’ to intensions 9◆ : 1xW Ñ P within Set

W .

It is induced by a certain fundamental adjunction, well-known in topos theory (c.f. Mac Lane

and Moerdijk 1992). The connection to Montague is first developed in Awodey, Buchholtz, and

Zwanziger (2016).

The Montagovian Comonad

Let � be the functor HomxW p1,´q : Set
W Ñ Set. Since an arrow c : 1xW Ñ P in Set

W

is a family of functions cw : t˚u Ñ P pwq, cw is interchangeable with cwp˚q via the natural

isomorphism HomSetpt˚u, Aq – A, so c is essentially the family of elements cwp˚q P P pwq, an

‘intension’ of P . Intuitively, then, � takes the object P to its set of intensions.

In the other direction, the diagonal or constant presheaf functor, � : Set Ñ Set
W takes a

set A to the functor �A given by �Apwq “ A for all w P W . So ��P pwq “ �P is again the

set of intensions of P.

Remark 36. The functor �� can be said to ‘give access’ to intensions at the local level (at each

w) in the following sense: an arrow ↵ : ��P Ñ Q will have as its component at world w a

function ↵w : HomxW p1xW , P q Ñ Qpwq whose domain is the set of P -intensions.

For each A P Set and P P Set
W , there is an isomorphism

� : HomxW p�A,P q – HomSetpA,�P q .

This isomorphism � takes the natural transformation f : �A Ñ P to the function �pfq : A Ñ

�P which takes a P A to the global section �pfqpaq : 1xW Ñ P whose component at w P W

is specified by p�pfqpaqqwp˚q “ fwpaq. In the other direction, �´1 takes the function g : A Ñ

�P to the natural transformation �
´1pgq : �A Ñ P whose component at w P W is given

by �
´1pgqwpaq “ gpaqwp˚q. The reader may check that � and �

´1 are inverse and that the
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isomorphism is natural in A and P , so � is left adjoint to �.

Furthemore, � preserves finite limits, as limits are pointwise in Set
W. Thus, we have a

finite-limit preserving comonad �� : Set
W Ñ Set

W .

Let E P Set
W . Then �� and E together determine an interpretation of MIL.

Intension

Given an interpretation JcK : 1xW Ñ JAK of a constant c : A, we interpret pc as JcK˚, namely the

composite

1xW
�– ��1xW

��JcK›››Ñ ��JAK .

Consequently, JpcK is given by

JpcKwp˚q “ pJcK˚qwp˚q

“ p��pJcKq�qwp˚q

“ p��JcKqw�wp˚q

“ p��JcKqwpid1xW
q

“ �JcKpid1xW
q

“ Homp1xW , JcKqpid1xW
q

“ JcK id1xW

“ JcK

That is, JpcK “ �pÄJcKq is that intension which at every w is JcK.

As for terms with free variables, given an interpretation Jx1 : 5A1, ..., xn : 5An | t : BK :

��JA1K ˆ ... ˆ ��JAnK Ñ JBK , we interpret pt as JtK˚, namely the composite

��JA1Kˆ...ˆ��JAnK
�⌘�JA1Kˆ...ˆ�⌘�JAnK›››››››››››››Ñ ����JA1Kˆ...ˆ����JAnK

�– ��p��JA1Kˆ...ˆ��JAnKq ��JtK›››Ñ ��JBK .
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Consequently, JptK is given by

pJptKwaqw1p˚q “ ppJtK˚qwaqw1p˚q

“ ppp��JtKq�p�⌘�JA1K ˆ ... ˆ �⌘�JAnKqqwaqw1p˚q

“ pp��JtKqw�wp�⌘�JA1K ˆ ... ˆ �⌘�JAnKqwaqw1p˚q

“ p�pJtKq�wp�⌘�JA1K ˆ ... ˆ �⌘�JAnKqwaqw1p˚q

“ p�pJtKq�w 
´1
w pp�⌘�JA1Kqw ˆ ... ˆ p�⌘�JAnKqqwaqw1p˚q

“ p�pJtKq�w 
´1
w pp�⌘�JA1Kqw ˆ ... ˆ p�⌘�JAnKqqwaqw1p˚q

“ p�pJtKq�w 
´1
w p⌘�JA1K ˆ ... ˆ ⌘�JAnKqaqw1p˚q

“ p�JtK�w 
´1
w x⌘�JA1Kpa1q, ..., ⌘�JAnKpanqyqw1p˚q

“ p�JtK�w 
´1
w x�w.a1, ...,�w.anyqw1p˚q

“ p�JtK�w 
´1
w ✓

´1
w �w.xa1, ..., anyqw1p˚q

“ p�JtK�w.xa1, ..., anyqw1p˚q

“ p�w.JtKwxa1, ..., anyqw1p˚q

“ JtKw1xa1, ..., any

That is, JptK is that natural transformation which at w takes A to the intension whose value

at each w
1 is the result of applying JtKw1 to a.

Remark 37. Our semantics of Intension thus achieves the treatment of free variables as ‘rigid

designators’ in ‘intensional contexts’. This behavior falls out of the comonadic semantics, shed-

ding some light on Montague’s treatment of free variables as rigid designators, which on its face

seems ad hoc. The present approach is furthermore ‘more modular’ than Montague’s in that

its treatment of free variables is achieved together with a standard semantics for function types

validating the �⌘-rules.
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Extension

Now, for the extension operator: For any P P Set
W , "P is by definition Åid�P , which, using the

adjunction, is given by Åid�Pwpaq “ awp˚q. That is, "P is that natural transformation which at w

takes each intension a of P to its value at w.

Revisiting the Restriction on Contexts

Note that the operation used to interpret Intension,

p´q˚ “ 5p´q ˝ 5p�´1q ˝ �´ ˝ � “ 5p´q ˝ 5p�´1q ˝ �⌘U´ ˝ � “ 5p´q ˝ 5p�´1q ˝ �p ŕq ˝ � ,

when viewed in the latter form, makes sense not just on natural transformations with domain

of form ��A but more generally on those of form �A, known as constant functors. If the

interpretation of every type were constant, then the interpretation of all contexts would be also,

as � preserves finite products. In such case, the restriction on contexts in Intension would thus

be unnecessary.

In the present example, we can impose that all types have constant interpretation by requiring

that E does. In this case, all basic types have constant interpretation, since JT K “ ⌦xW –

�p⌦Setq. If JAK and JBK are constant, then so is JBAK “ JBKJAK, as exponentials are pointwise.

Finally, if JAK is constant, then so clearly is J5AK “ ��JAK.

Montague’s semantics uses the same set of entities at every world, which corresponds under

the present approach to JEK being constant. Thus, he does not need the restriction on contexts.

Although a rather minor point in the present example, the restriction on contexts is needed to

exploit the full generality of the setup in Example 3.2.

Tense Modalities

Non-S4 modalities may still be given a non-algebraic semantics in the manner of Montague. We

illustrate for the tense modalities of Montague (1973): Let I be a set and xJ,†y a strict total
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order. Then the future modality F : ��⌦zIˆJ Ñ ��⌦zIˆJ is given by pFwpaqqxi,jyp˚q “ J if

there exists j1 such that j † j
1 and axi,j1yp˚q “ J. The past modality P : ��⌦zIˆJ Ñ ��⌦zIˆJ is

given by pPwpaqqxi,jyp˚q “ J if there exists j1 such that j1 † j and axi,j1yp˚q “ J.

4.2.3 Interpretation with an Accessibility Relation

Montague’s semantics for the intension and necessity operators use the fact that a single entity,

property, etc. may exist at multiple worlds.

However, one might also make use of other relations than equality to make associations

across worlds. This tack is taken by Lewis (1968)’s semantics for modal logic, which uses a

‘counterpart’ relation among entities. As pointed out in Awodey et al. (2014), any presheaf

P : W Ñ Set on a category W can be viewed as providing such a relation. For any arrow

f : w Ñ w
1 in W, P pfq takes a P P pwq to its ‘f -counterpart’ in P pw1q.

In the following example, this presheaf approach is used to give a semantics for arbitrary S4

modalities. Interestingly, an intension in this interpretation is not ‘a value at every world’ but

rather ‘a value for every possible path’.

Let W be a category. We emphasize that when W is a preorder, its objects may be thought

of as worlds and its arrows as providing an accessibility relation. Furthermore, if W is a general

category, its arrows may be thought of as ‘accesses’, futures, or possible paths.

The inclusion i : W ãÑ W of the underlying set W into W induces a functor i˚
: Set

W Ñ

Set
W by precomposition. That is, i˚ is given on objects by i

˚pP q “ Pi. Note that i˚pP qpwq “

Pipwq “ P pwq; indeed, i˚ is the forgetful functor from presheaves on W to W -indexed family

of sets.

As developed in, inter al. Awodey (2006), i˚ is part of a string of adjoints i! % i
˚ % i˚. The

action of i˚ on objects can be seen from

i˚pP qpwq – HomxWpypwq, i˚P q – HomxW pi˚pypwqq, P q ,

where the first isomorphism is by the Yoneda lemma and the second is because i˚ is a right
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adjoint. Unwinding the definitions, one sees that an ↵ P HomxW pi˚pypwqq, P q is nothing but a

rule which for every w
1 and f : w Ñ w

1 gives an element ↵w1pfq P P pw1q. That is, an element

of i˚pP qpwqr– i
˚
i˚pP qpwqs gives a value at the end of every possible path from w, ‘an intension

of P at w’. In the case where W is a preorder, this amounts to a value at every accessible (and

not in general every) world.3

Both i˚ and i
˚ are a right adjoints, and thus preserve limits. Thus, we have a finite-limit

preserving comonad i
˚
i˚ : Set

W Ñ Set
W .

Let E P Set
W . Then i

˚
i˚ and E together specify an interpretation of MIL.

For the sake of concision, we merely state facts about i˚ % i˚. The reader may consult

Awodey et al. (2014) for greater detail. The natural isomorphism � : HomxW pi˚
A,Bq –

HomxWpA, i˚Bq is given by p�p↵qqwpaq “ ⇠, where ⇠ is given by ⇠w1pfq “ ↵w1Apfqpaq. �´1 is

given by p�´1p↵qqwpaq “ p↵wpaqqwpIdwq.

For an arrow c : 1xW Ñ P , we have i
˚prcqwp˚q “ rcwp˚q “ ⇠, where this last is given by

⇠pfq “ cw1p1ÄW pfqp˚qq “ cw1p˚q. Thus, the intension of c at w is just the values of c at worlds

accessible from w.

More generally, given t : i
˚
A Ñ P , i˚prtqwpaq “ rtwpaq “ ⇠, where this last is given by

⇠w1pfq “ tw1Apfqpaq. That is, i˚prtq is that natural transformation which at w takes a to the

intension whose value for any possible path f : w Ñ w
1 is the result of applying tw1 to a’s

f -counterpart.

"P is given by p"P qwpaq “ awpIdwq. Thus, "P is that natural transformation which at each w

takes the intension a to its value on the trivial path.

3Those unhappy with this notion of intension but wishing to interpret general S4 modalities might wish to

consider a definition of interpretation for MIL which uses � % � for the intension and extension operators and

i˚ % i˚ for the modal operator.
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Revisiting the Restriction on Contexts

In light of Section 4.2.2, we might hope to avoid the restriction on contexts in Intension and Box

by amending our notion of interpretation, requiring that JEK be i˚pP q for some given P P Set
W.

However, this is not on its own enough. If we have JAK “ i
˚pP q and JBK “ i

˚pQq for given

P,Q P Set
W, we need to find a reasonable presheaf structure on JBAKp“ JBKJAK “ i

˚pQqi˚pP qq.

This is possible when W is a groupoid, since in that case, i˚pQqi˚pP q – i
˚pQP q. Note that when

W is codiscrete, it is a groupoid, accounting for the option to jettison the context restriction in

the Section 4.2.2 semantics. Since we are interested in modal operators arising when W is not a

groupoid, however, there is no obvious way around the restriction.

4.3 Boolean-Valued Semantics

Recall that in Montague (1973), propositions of MIL are interpreted as elements of the powerset

2
W of some set W of possible worlds. The logical constants are in effect interpreted using the

natural Boolean algebra operations on 2
W .

Gallin (1975) generalizes this setup by replacing 2
W with an arbitrary complete Boolean

algebra B. Gallin’s generalization is recovered in our approach using the comonad �� induced

by

HomShpBqp1,´q ” � : ShpBq Ô Set : �,� % � ,

the global sections adjunction for the category of sup-topology sheaves on B (see, inter al., Mac

Lane and Moerdijk 1992).

This setup still makes sense when B is replaced by an arbitrary complete Heyting algebra H,

yielding the adjunction

HomShpHqp1,´q ” � : ShpHq Ô Set : �,� % � .
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The Monatagovian comonad of Section 4.2.2 is recovered when H – 2
W .
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