
Dependent Types
for Natural Language Semantics

Marek Zawadowski

University of Warsaw

NASSLLI
CMU, Pittsburgh

June 25, 2018

Marek Zawadowski
Dependent Types for Natural Language Semantics
1 / 22



Propositional logic - syntax

Propositional logic - syntax

1 Language
1 propositional variables p, q, r , . . .
2 propositional constants ⊥,>
3 connectives ∧,∨,→

2 Propositional formulas (recursive definition):
least set F containing variables, constants, φ ∧ ψ, φ ∨ ψ,
φ→ ψ whenever it contains φ and ψ.

Marek Zawadowski
Dependent Types for Natural Language Semantics
2 / 22



Propositional logic - meaning

Propositional logic - meaning of the formulas

1 Truth conditions (leading to the classical logic)
1 Satisfaction: when a propositional formula is true, given an

assignment (i.e. truth values of the variables occurring in it)?
2 Tautology = formula is true, under any assignment.

2 Provability (leading to the intuitionistic logic)
1 what will count as a proof/justification of a formula, given

proofs/justifications of the variables occurring in it?
2 Tautology = a formula that has a proof no matter what are

the (sets of) proofs of the variables occurring in it.

Marek Zawadowski
Dependent Types for Natural Language Semantics
3 / 22



Propositional logic - meaning

Notation
a : A

may be interpreted as

1 a is an element of a collection/set A;

2 a is a term of a type A;

3 a is a proof of a formula/proposition A.

Propositions as types.

Marek Zawadowski
Dependent Types for Natural Language Semantics
4 / 22



Propositional logic - meaning

Provability/justification/evidence:

1 a proof of φ ∧ ψ consists of a pair 〈x , y〉 where x is a proof of
φ and y is a proof of ψ;

2 a proof of φ∨ ψ consists of a pair 〈a, y〉 where a is a choice of
a formula φ or ψ and y is a proof of that formula;

3 a proof of φ→ ψ is a function/construction that transforms
proofs of φ to proofs of ψ;

4 there is no proof of ⊥;

5 > has a proof.

Note that the formula p ∨ (p →⊥) is NOT a tautology in the
above sense.

Marek Zawadowski
Dependent Types for Natural Language Semantics
5 / 22



Individual elements - first order logic

We extend the language L adding

1 individual variables (Var) and individual constants (Const) to
talk about individual elements;

2 predicates that can express properties of individual elements
Pred ;

3 function symbols Fun to denote operations on individual
elements;

4 quantifiers: ∃x , ∀x ;

5 generalized quantifiers: ∃ωx , most, few, many.

And we repeat a recursive definition of a first order formula over
the language L.

Marek Zawadowski
Dependent Types for Natural Language Semantics
6 / 22



First order logic - model-theoretic approach

Before we can define the notion of satisfaction, we need to define
the notion of an L-structure to interpret the symbols of language
L:

1 U - a universe (a set);

2 an element of U for every constant of L;

3 a relation on U for every predicate of L;

4 a function for every function symbol of L.

Now we can define in the usual (here called model-theoretic) way

1 the notion of satisfaction;

2 the notion of tautology.

Marek Zawadowski
Dependent Types for Natural Language Semantics
7 / 22



First order logic - many types?

The idea of having just one universe in first order models
originated from G. Frege and is widely adopted in
mathematics as it fits well the mathematical/logical practice.
But there is no problem to have more than just one type of
elements. This is common practice in programming languages.
Different kinds/types/sorts of elements are stored in different
types for economy reasons.
When we decide to have many types, we need to take care of
the types of variables X , Y Z . Thus we need to consider
contexts to keep track of them

x , x ′ : X , y : Y , z , z ′ : Z

... and consider formulas/expressions only in contexts, to keep
track of the typing of variables:

x , x ′ : X , y : Y , z , z ′ : Z ` P(x , y , z ′)

x ′ : X , y : Y , z , z ′ : Z ` ∃x :XP(x , y , z ′)

One can thing that types are ‘collections of things’ over which
we can quantify.

Marek Zawadowski
Dependent Types for Natural Language Semantics
8 / 22



First order logic - proof-theoretic interpretation

How do individual elements come into a proof-theoretic
interpretation? What would play a role of an L-structure?

A universe U? OK, but we can have here also many types
X ,Y ,Z . . ., as well.

A predicate, say P on X , should provide for each x in X a
collection P(x) of proofs that the property P holds of x . We
can think of it as ‘a family of collections’ {P(x)}x∈X or more
concisely as a map

P

X
?
π

so that P(x) is a fiber π−1(x) of map π over element x .

Marek Zawadowski
Dependent Types for Natural Language Semantics
9 / 22



First order logic - dependent types

... and we can iterate this dependence relation

X1

X0

?

X2

?

...

Xn

Xn−1
?

We think of Xi+1 as a family of (dependent) types (fibers) indexed
by the ‘elements’ of type Xi .

Marek Zawadowski
Dependent Types for Natural Language Semantics
10 / 22



First order logic: more on dependent types

... dependence does not need to be a linear relation (left diagram)

X1

X0

?

X2

@
@R

X3

�
�	

X4

?

X1

X0

?

X2

?

X3 ×X1 X2

?

X4 ×X1 X2

?

but it can be linearized (right diagram) if we want to...

Marek Zawadowski
Dependent Types for Natural Language Semantics
11 / 22



First order logic - notation for contexts with dependent
types

Notation for contexts with dependent types
In the notation

x0 : X0, x1 : X1(x0), x2 : X2(x1, x0)

all the variables types depend on are explicitly indicated.

Marek Zawadowski
Dependent Types for Natural Language Semantics
12 / 22



First order logic - proof-theoretic semantics

The statement

x0 : X0, x1 : X1(x0), x2 : X2(x1, x0) ` P(x0, x1, x2) : type

should be read that P is a type depending on variables x0, x1, x2.

Marek Zawadowski
Dependent Types for Natural Language Semantics
13 / 22



First order logic - proof-theoretic interpretation of
quantifiers

Existential quantification
If we have already built a type in context

x0 : X0, x1 : X1(x0) ` P(x0, x1) : type

then we can form a type

x0 : X0 ` Σx1:X1(x0)P(x0, x1) : type

It should be interpreted as the collection of proofs such that in the
fiber over x0 in X0 we have proofs why ∃x1:X1(x0)P(x0, x1).

Marek Zawadowski
Dependent Types for Natural Language Semantics
14 / 22



First order logic - proof-theoretic interpretation of
quantifiers

Universal quantification Similarly, having

x0 : X0, x1 : X1(x0) ` P(x0, x1) : type

we can form a type

x0 : X0 ` Πx1:X1(x0)P(x0, x1) : type

It should be interpreted as the collection of proofs such that in the
fiber over x0 in X0 we have proofs why ∀x1:X1(x0)P(x0, x1).
NB. This is more a quantification of proofs than individual
elements. But for both universal and existential quantifiers they
agree, in a sense, with the intuitive meaning of quantifiers.

Marek Zawadowski
Dependent Types for Natural Language Semantics
15 / 22



First order logic - proof-theoretic interpretation of
quantifiers - iteration

Iterated quantification
We can have many quantifiers in a formula but we need to respect
the dependencies.
If with have a type in context

x0 : X0, x1 : X1(x0) ` P(x0, x1) : type

we can form types

x0 : X0 ` Πx1:X1(x0)P(x0, x1) : type

` Σx0:X0Πx1:X1(x0)P(x0, x1) : type

but we can’t form a formula

` Σx1:X1(x0)Πx0:X0P(x0, x1) : type WRONG !

Marek Zawadowski
Dependent Types for Natural Language Semantics
16 / 22



First order logic - proof-theoretic meaning of a formula

Proof-theoretic meaning
A sentence is a tautology iff it has a proof iff the corresponding
type is inhabited.

Marek Zawadowski
Dependent Types for Natural Language Semantics
17 / 22



First order logic - interpretation of Σ and Π in Sets

If we interpret types as sets and dependent types as functions, say
π : B → A, then

type Σa:AB(a) can be interpreted as the sum of the fibers of
the function π i.e. the domain of π

Σa:AB(a) =
∐
a∈A

B(a) = B;

type Πa:AB(a) can be interpreted as the set of functions
s : A→ B such that π ◦ s = idA i.e. the product of fibers of π

Πa:AB(a) =
∏
a∈A

B(a).

Marek Zawadowski
Dependent Types for Natural Language Semantics
18 / 22



First order logic: model-theoretic interpretation with
dependent types

Can we combine dependent types with model-theoretic
interpretation? Why not?
Do we want that? Yes: there are dependent type constructions
that natural languages make use of (e.g. anaphora).
Thus we can consider then formulas of first order logic in the
context with dependent types like

x0 : X0, x1 : X1(x0) ` P(x0, x1) : formula

x0 : X0 ` ∀x1:X1(x0)(P(x0, x1) ∧ Q(x0, x1)) : formula

but we can’t form a formula

` ∃x1:X1(x0)∀x0:X0P(x0, x1) : formula WRONG !

Marek Zawadowski
Dependent Types for Natural Language Semantics
19 / 22



First order logic: model-theoretic interpretation with
dependent types

What do we get:

1 predicates on dependent types;

2 quantifications along fibers;

3 generalized quantifications as easy as ∃ and ∀.

Marek Zawadowski
Dependent Types for Natural Language Semantics
20 / 22



Dependent types - tracing the identity

Types (applications and identity) vs predicates (applications).

Marek Zawadowski
Dependent Types for Natural Language Semantics
21 / 22



The end

Thank You for Your Attention!

Marek Zawadowski
Dependent Types for Natural Language Semantics
22 / 22


