
Formal Semantics in MTTs: Playing Around with the
Coq Proof Assistant

Stergios Chatzikyriakidis
CLASP, Department of Philosophy, Linguistics and Theory of Science

University of Gothenburg

June 29, 2018

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 1/23



Proof Assistants: A brief history

Started in the early 60s

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 2/23



Proof Assistants: A brief history

Started in the early 60s

◮ The need for formally verified proofs

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 2/23



Proof Assistants: A brief history

Started in the early 60s

◮ The need for formally verified proofs
◮ The AUTOMATH project. Late 60’s (see [de Bruijn(1980)] for a

survey)

⋆ Aim: a system for the mechanic verification of mathematics

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 2/23



Proof Assistants: A brief history

Started in the early 60s

◮ The need for formally verified proofs
◮ The AUTOMATH project. Late 60’s (see [de Bruijn(1980)] for a

survey)

⋆ Aim: a system for the mechanic verification of mathematics
⋆ Several AUTOMATH systems have been implemented

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 2/23



Proof Assistants: A brief history

Started in the early 60s

◮ The need for formally verified proofs
◮ The AUTOMATH project. Late 60’s (see [de Bruijn(1980)] for a

survey)

⋆ Aim: a system for the mechanic verification of mathematics
⋆ Several AUTOMATH systems have been implemented
⋆ The first system to practically exploit the Curry-Howard isomorphism

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 2/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem ([Gonthier(2005)], Coq)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem ([Gonthier(2005)], Coq)
⋆ Jordan curve theorem ([Korni lowicz(2007), Hales(2007)], Mizar and

HOL respectively)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem ([Gonthier(2005)], Coq)
⋆ Jordan curve theorem ([Korni lowicz(2007), Hales(2007)], Mizar and

HOL respectively)
⋆ The prime number theorem

([Avigad et al.(2007)Avigad, Donnelly, Gray, and Raff], Isabelle)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



Proof Assistants: A brief history

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem ([Gonthier(2005)], Coq)
⋆ Jordan curve theorem ([Korni lowicz(2007), Hales(2007)], Mizar and

HOL respectively)
⋆ The prime number theorem

([Avigad et al.(2007)Avigad, Donnelly, Gray, and Raff], Isabelle)
⋆ Feit-Thompson theorem

([Gonthier et al.(2013)Gonthier, Asperti, Avigad, Bertot, Cohen, Garillot, Le
Coq (170.000 lines of code!))

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 3/23



The Coq proof assistant

INRIA project

◮ Started in 1984 as an implementation of Coquand’s Calculus of
Constructions (CoC)

◮ Extension to the Calculus of Inductive Constructions (CiC) in 1991

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 4/23



The Coq proof assistant

INRIA project

◮ Started in 1984 as an implementation of Coquand’s Calculus of
Constructions (CoC)

◮ Extension to the Calculus of Inductive Constructions (CiC) in 1991
◮ Coq offers a program specification and mathematical higher-level

language called Gallina based on CiC

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 4/23



The Coq proof assistant

INRIA project

◮ Started in 1984 as an implementation of Coquand’s Calculus of
Constructions (CoC)

◮ Extension to the Calculus of Inductive Constructions (CiC) in 1991
◮ Coq offers a program specification and mathematical higher-level

language called Gallina based on CiC
◮ CiC combines both expressive higher-order logic as well as a richly

typed functional programming language

Winner of the 2013 ACM software system award

A collection of 100 mathematical theorems proven in Coq:
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 4/23



The Coq proof assistant

An ideal tool for formal verification

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs
◮ Equipped with libraries for efficient arithmetics in N, Z and Q, libraries

about lists, finite sets and finite maps, libraries on abstract sets,
relations and classical analysis among others

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs
◮ Equipped with libraries for efficient arithmetics in N, Z and Q, libraries

about lists, finite sets and finite maps, libraries on abstract sets,
relations and classical analysis among others

◮ Built-in automated tactics that can help in the automation of all or
part of the proof process

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



The Coq proof assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs
◮ Equipped with libraries for efficient arithmetics in N, Z and Q, libraries

about lists, finite sets and finite maps, libraries on abstract sets,
relations and classical analysis among others

◮ Built-in automated tactics that can help in the automation of all or
part of the proof process

◮ Allows the definition of new proof tactics by the user
⋆ The user can develop automated tactics by using this feature

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 5/23



Installing Coq

Easy to install (http://coq.inria.fr/download)

Use the installer or can get Coq via Macports or HomeBrew

There is an interface for emacs, Proof General (provides support for a
number of proof assistants incl. Coq, Isabelle, HOL among others)

◮ Get Proof-general here: https://proofgeneral.github.io/
◮ Customize your emacs .init file according to the instructions in there

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 6/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

The way we see it. Three main points:

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

The way we see it. Three main points:

1. Proof assistants implement constructive type theories (e.g. Coq, Agda)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

The way we see it. Three main points:

1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
2. Proof assistants are extremely powerful reasoning engines

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

The way we see it. Three main points:

1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
2. Proof assistants are extremely powerful reasoning engines
3. Constructive type theories as an alternative language for formal

semantics

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Ok, how is this relevant to NL semantics?
◮ This is a valid question

The way we see it. Three main points:

1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
2. Proof assistants are extremely powerful reasoning engines
3. Constructive type theories as an alternative language for formal

semantics

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 7/23



Relevance to NL semantics?

Given these three points, two main uses:

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 8/23



Relevance to NL semantics?

Given these three points, two main uses:

1. Natural Language Reasoners

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 8/23



Relevance to NL semantics?

Given these three points, two main uses:

1. Natural Language Reasoners
2. Formal Checkers of the validity of semantic accounts

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 8/23



Relevance to NL semantics?

Given these three points, two main uses:

1. Natural Language Reasoners
2. Formal Checkers of the validity of semantic accounts

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 8/23



An example of a simple proof

Transitivity of implication: (P → Q) → (Q → R) → (P → R) (file
Oslo basics.v)

◮ Important note: all examples discussed in the talk can be found here:
Github repository

What is needed before we get into proof mode
◮ Declaring P ,Q,R as propositional variables

Variables P Q R:Prop.

◮ With this declaration at hand, we can get into proof mode:

Theorem trans: (P->Q)->(Q->R)->(P->R)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 9/23

https://github.com/StergiosCha/CoqNL


Proof tactics

Some of the basic predefined Coq tactics (some examples in files
Oslo basics.v and Oslo basics 1b.v)

◮ Conjunction
⋆ elim: Use of the elimination rule
⋆ split: Splits the conjunction into two subgoals
⋆ Examples:

Theorem conj: A/\B->A.

Theorem conj: B/\(A/\C)->A/\B.

◮ Disjunction
⋆ Elim: elimination rule
⋆ Left,Right: deals with one of the two disjuncts

Theorem disj: (B\/(B\/C))/\(A\/B)->A\/B.

◮ Implication (⇒) and Forall
⋆ intro(s)
⋆ apply

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 10/23



Proof tactics

Existential

◮ exists t: instantiates an existential variable

Equality (=)
◮ reflexivity, symmetry, transitivity : the usual properties of equality
◮ congruence: used when a goal is solvable after a series of rewrites
◮ rewrite, subst: rewrites an element of the equation with the other

element of the equation. Subst is used when one of the terms is a
variable

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 11/23



Proof tactics - exists, elim

Imagine we want to prove the following:

Parameter P: nat -> Prop.

Theorem EXISTS: P 5-> exists n: nat, P n.

We can use the tactic exists to substitute 5 for n and prove the goal
(example in Oslo basics 1b.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 12/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

◮ In principle, all semantic theories can be implemented in Coq (the
system is expressive enough)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

◮ In principle, all semantic theories can be implemented in Coq (the
system is expressive enough)

⋆ Shallow vs Deep embedding

Some toy illustrative examples

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

◮ In principle, all semantic theories can be implemented in Coq (the
system is expressive enough)

⋆ Shallow vs Deep embedding

Some toy illustrative examples

◮ Montagovian Type-shifters (file type shifters.v)
◮ Some toy TTR examples (Records.v)
◮ Retoré’s dot-types and polymorphic conjunction (file

MontagovianLexiconToy.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

◮ In principle, all semantic theories can be implemented in Coq (the
system is expressive enough)

⋆ Shallow vs Deep embedding

Some toy illustrative examples

◮ Montagovian Type-shifters (file type shifters.v)
◮ Some toy TTR examples (Records.v)
◮ Retoré’s dot-types and polymorphic conjunction (file

MontagovianLexiconToy.v)
◮ Champollion’s coordination paper (formalized part of the account as a

test case to check correctness (it works!)) (file Champollion.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

The idea is simple: formalize your semantic account and check that is
correct (type-checks, correct entailments etc.)

◮ Coq speaks an MTT, so MTT accounts can be easily implemented
without having to define the theory

◮ In principle, all semantic theories can be implemented in Coq (the
system is expressive enough)

⋆ Shallow vs Deep embedding

Some toy illustrative examples

◮ Montagovian Type-shifters (file type shifters.v)
◮ Some toy TTR examples (Records.v)
◮ Retoré’s dot-types and polymorphic conjunction (file

MontagovianLexiconToy.v)
◮ Champollion’s coordination paper (formalized part of the account as a

test case to check correctness (it works!)) (file Champollion.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 13/23



Formal Checking/Reasoning

Some more elaborate examples in MTTs

MTT fragment that deals with entailment cases from the FraCaS (file
MTT fragment for FraCaS.v)

Identity criteria (an older version of the theory presented on Monday
but still works!) (file individuationnew.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 14/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank
◮ Then, every syntactic construction is mapped to a (compositional)

semantics

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank
◮ Then, every syntactic construction is mapped to a (compositional)

semantics
◮ Reasoning is performed

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

We use Ljünglof’s FraCaS treebank and take these trees to their
semantic counterparts

The structure of the semantic representation

1 Every GF syntactic category C is mapped to a Coq Set, noted [[C ]].
2 GF Functional types are mapped compositionally : [[A → B]] =

[[A]] → [[B]]
3 Every GF syntactic construction function f :X is mapped to a function

[[f ]] such that [[f ]] : [[X ]].
4 GF function applications are mapped compositionally:

[[t(u)]] = [[t]]([[u]]).

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 16/23



The FraCoq system

Sentences

◮ We interpret sentences as propositions: [[S ]] = Prop.
◮ To verify that P entails H , we prove the proposition [[P]] → [[H ]].

Definition S := Prop.

Common Nouns
◮ Predicates over an abstract object type

Parameter object : Set.

Definition CN := object->Prop.

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 17/23



The FraCoq system

Verb phrases

◮ Parameterize over the noun of the subject (using Π types)

Definition VP := forall (subjectClass : CN)

object -> Prop.

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 18/23



The FraCoq system

Adjectives

◮ Functions from cn to cn (predicates to predicates)

Definition A := CN -> CN.

◮ Different classes of adjectives are captured using coercions (subtyping).
All special classes of adjectives are subtypes of A.

Definition IntersectiveA := object -> Prop.

Definition wkIntersectiveA : IntersectiveA -> A

:= fun a cn (x:object) => a x /\ cn x.

Coercion wkIntersectiveA : IntersectiveA >-> A.

◮ Provision is made for intersective, subsective, privative and
non-committal adjectives

For a tutorial of how the system works, see here: tutorial

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 19/23

https://github.com/GU-CLASP/FraCoq/blob/master/Tutorial.org


The FraCoq system

Covers almost half of the suite (174 examples)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 20/23



The FraCoq system

Covers almost half of the suite (174 examples)

1. Quantifiers
2. Plurals
3. Adjectives
4. Comparatives
5. Attitudes
◮ Interesting to note that no complete run of the suite has been made

yet!

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 20/23



The FraCoq system

Covers almost half of the suite (174 examples)

1. Quantifiers
2. Plurals
3. Adjectives
4. Comparatives
5. Attitudes
◮ Interesting to note that no complete run of the suite has been made

yet!

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 20/23



Some sample FraCaS examples

(1) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 21/23



Some sample FraCaS examples

(3) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]

(4) No delegate finished the report on time..

Did any Scandinavian delegate finish the report on time? [No,
FraCaS 070]

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 21/23



Evaluation

The following table presents the results (Ours) as well as a
comparison with the approach in Mineshima et al. (MINE, 2015), Bos
(Nut, 2008) and Abzianidze (Langpro, 2015)

Section # examples Ours MINE Nut Langpro

1
2
3
4
5
6

Quantifiers
Plurals
Adjectives
Comparatives
Attitudes
Total

75
33
22
31
13
174 (181)

.96

.76

.95

.56

.85
0.83

.77

.67

.68

.48

.77
0.69

.53

.52

.32

.45

.46
0.50

.93 (44)

.73 (24)

.73 (12)
-
.92 (9)
0.85

The approach by Abzianidze has an accuracy of 0.85 without
involving the comparative section. If this section is taken out, our
system’s accuracy rises to 0.88

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 22/23



Conclusions/Future Research

MTTs as foundational languages for formal

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23



Conclusions/Future Research

MTTs as foundational languages for formal
◮ Formally, well-studied

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23



Conclusions/Future Research

MTTs as foundational languages for formal
◮ Formally, well-studied
◮ Expressively adequate

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23



Conclusions/Future Research

MTTs as foundational languages for formal
◮ Formally, well-studied
◮ Expressively adequate
◮ Proof-theoretically specified, supporting effecting reasoning

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23



Conclusions/Future Research

MTTs as foundational languages for formal
◮ Formally, well-studied
◮ Expressively adequate
◮ Proof-theoretically specified, supporting effecting reasoning

State of maturity of both MTT semantics and proof assistant
technology

◮ Use proof assistant technology and MTTs for formal verification and
inference

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23



N.G. de Bruijn.
A survey of the project AUTOMATH.
In J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press,
1980.

Georges Gonthier.
A computer-checked proof of the Four Colour Theorem.
2005.
URL
http://research.microsoft.com/~{}gonthier/4colproof.pdf.

Artur Korni lowicz.
A proof of the jordan curve theorem via the brouwer fixed point
theorem.
2007.

Thomas C Hales.
The jordan curve theorem, formally and informally.
American Mathematical Monthly, 114(10):882–894, 2007.

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23

http://research.microsoft.com/~{}gonthier/4colproof.pdf


Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff.
A formally verified proof of the prime number theorem.
ACM Transactions on Computational Logic (TOCL), 9(1):2, 2007.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
OConnor, Sidi Ould Biha, et al.
A machine-checked proof of the odd order theorem.
In Interactive Theorem Proving, pages 163–179. Springer, 2013.

A. Ranta.
Grammatical Framework: Programming with Multilingual Grammar.
CSLI Publications, 2011.

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 23/23


