# Formal Semantics in MTTs: Playing Around with the Coq Proof Assistant

Stergios Chatzikyriakidis CLASP, Department of Philosophy, Linguistics and Theory of Science University of Gothenburg

June 29, 2018



< 67 > <

S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

• Started in the early 60s



S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

- Started in the early 60s
  - The need for formally verified proofs



- Started in the early 60s
  - The need for formally verified proofs
  - The AUTOMATH project. Late 60's (see [de Bruijn(1980)] for a survey)
    - $\star\,$  Aim: a system for the mechanic verification of mathematics



- Started in the early 60s
  - The need for formally verified proofs
  - The AUTOMATH project. Late 60's (see [de Bruijn(1980)] for a survey)
    - \* Aim: a system for the mechanic verification of mathematics
    - ★ Several AUTOMATH systems have been implemented



- Started in the early 60s
  - The need for formally verified proofs
  - The AUTOMATH project. Late 60's (see [de Bruijn(1980)] for a survey)
    - \* Aim: a system for the mechanic verification of mathematics
    - \* Several AUTOMATH systems have been implemented
    - \* The first system to practically exploit the Curry-Howard isomorphism



A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Proof-assistant technology has gone a long way since then



S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks



- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)



- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)
    - ★ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among other things)
  - Important verified proofs



- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)
    - ★ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among other things)
  - Important verified proofs
    - ★ Four Colour Theorem ([Gonthier(2005)], Coq)



A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 A
 A
 A
 A >
 A
 A >
 A

- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)
    - ★ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among other things)
  - Important verified proofs
    - ★ Four Colour Theorem ([Gonthier(2005)], Coq)
    - ★ Jordan curve theorem ([Korniłowicz(2007), Hales(2007)], Mizar and HOL respectively)

- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)
    - ★ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among other things)
  - Important verified proofs
    - ★ Four Colour Theorem ([Gonthier(2005)], Coq)
    - ★ Jordan curve theorem ([Korniłowicz(2007), Hales(2007)], Mizar and HOL respectively)
    - The prime number theorem ([Avigad et al.(2007)Avigad, Donnelly, Gray, and Raff], Isabelle)



- Proof-assistant technology has gone a long way since then
  - Proliferation of proof assistants implementing various logical frameworks
    - ★ Classical logics/set theory (Mizar, Isabelle)
    - ★ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among other things)
  - Important verified proofs
    - ★ Four Colour Theorem ([Gonthier(2005)], Coq)
    - ★ Jordan curve theorem ([Korniłowicz(2007), Hales(2007)], Mizar and HOL respectively)
    - The prime number theorem ([Avigad et al.(2007)Avigad, Donnelly, Gray, and Raff], Isabelle)
    - Feit-Thompson theorem ([Gonthier et al.(2013)Gonthier, Asperti, Avigad, Bertot, Cohen, Garillot, I Coq (170.000 lines of code!))



- INRIA project
  - Started in 1984 as an implementation of Coquand's Calculus of Constructions (CoC)
  - ▶ Extension to the Calculus of Inductive Constructions (CiC) in 1991



< 67 > <

- INRIA project
  - Started in 1984 as an implementation of Coquand's Calculus of Constructions (CoC)
  - ▶ Extension to the Calculus of Inductive Constructions (CiC) in 1991
  - Coq offers a program specification and mathematical higher-level language called *Gallina* based on CiC



- INRIA project
  - Started in 1984 as an implementation of Coquand's Calculus of Constructions (CoC)
  - ▶ Extension to the Calculus of Inductive Constructions (CiC) in 1991
  - Coq offers a program specification and mathematical higher-level language called *Gallina* based on CiC
  - CiC combines both expressive higher-order logic as well as a richly typed functional programming language
- Winner of the 2013 ACM software system award
- A collection of 100 mathematical theorems proven in Coq: http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/



• An ideal tool for formal verification



A (1) < A (1) </p>

S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

• An ideal tool for formal verification

Powerful and expressive logical language



A (1) < A (1) </p>

S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

• An ideal tool for formal verification

- Powerful and expressive logical language
- Consistent embedded logic



A (1) < A (1) </p>

S. Chatzikyriakidis

• An ideal tool for formal verification

- Powerful and expressive logical language
- Consistent embedded logic
- Built-in proof tactics that help in the development of proofs



• An ideal tool for formal verification

- Powerful and expressive logical language
- Consistent embedded logic
- Built-in proof tactics that help in the development of proofs
- ► Equipped with libraries for efficient arithmetics in *N*, *Z* and *Q*, libraries about lists, finite sets and finite maps, libraries on abstract sets, relations and classical analysis among others

< 67 > <

• An ideal tool for formal verification

- Powerful and expressive logical language
- Consistent embedded logic
- Built-in proof tactics that help in the development of proofs
- ► Equipped with libraries for efficient arithmetics in *N*, *Z* and *Q*, libraries about lists, finite sets and finite maps, libraries on abstract sets, relations and classical analysis among others
- Built-in automated tactics that can help in the automation of all or part of the proof process



• An ideal tool for formal verification

- Powerful and expressive logical language
- Consistent embedded logic
- Built-in proof tactics that help in the development of proofs
- ▶ Equipped with libraries for efficient arithmetics in *N*, *Z* and *Q*, libraries about lists, finite sets and finite maps, libraries on abstract sets, relations and classical analysis among others
- Built-in automated tactics that can help in the automation of all or part of the proof process
- Allows the definition of new proof tactics by the user
  - \* The user can develop automated tactics by using this feature

< A > <

# Installing Coq

- Easy to install (http://coq.inria.fr/download)
- Use the installer or can get Coq via Macports or HomeBrew
- There is an interface for emacs, Proof General (provides support for a number of proof assistants incl. Coq, Isabelle, HOL among others)
  - Get Proof-general here: https://proofgeneral.github.io/
  - Customize your emacs .init file according to the instructions in there

• Ok, how is this relevant to NL semantics?



▲ 御 ▶ → ● 三

S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

- Ok, how is this relevant to NL semantics?
  - This is a valid question



▲ 荷 → - ▲ 三

- Ok, how is this relevant to NL semantics?
  - This is a valid question
- The way we see it. Three main points:



- Ok, how is this relevant to NL semantics?
  - This is a valid question
- The way we see it. Three main points:
  - 1. Proof assistants implement constructive type theories (e.g. Coq, Agda)



< 67 ▶

- Ok, how is this relevant to NL semantics?
  - This is a valid question
- The way we see it. Three main points:
  - 1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
  - 2. Proof assistants are extremely powerful reasoning engines



- Ok, how is this relevant to NL semantics?
  - This is a valid question
- The way we see it. Three main points:
  - 1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
  - 2. Proof assistants are extremely powerful reasoning engines
  - 3. Constructive type theories as an alternative language for formal semantics



- Ok, how is this relevant to NL semantics?
  - This is a valid question
- The way we see it. Three main points:
  - 1. Proof assistants implement constructive type theories (e.g. Coq, Agda)
  - 2. Proof assistants are extremely powerful reasoning engines
  - 3. Constructive type theories as an alternative language for formal semantics



• Given these three points, two main uses:



▲ 御 ▶ → ● 三

S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

- Given these three points, two main uses:
  - 1. Natural Language Reasoners



< 17 × <

- Given these three points, two main uses:
  - 1. Natural Language Reasoners
  - 2. Formal Checkers of the validity of semantic accounts



< 67 ▶ <

- Given these three points, two main uses:
  - 1. Natural Language Reasoners
  - 2. Formal Checkers of the validity of semantic accounts



< 67 ▶ <

#### An example of a simple proof

- Transitivity of implication:  $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$  (file Oslo\_basics.v)
  - Important note: all examples discussed in the talk can be found here: Github repository
- What is needed before we get into proof mode
  - Declaring P, Q, R as propositional variables

Variables P Q R:Prop.

▶ With this declaration at hand, we can get into proof mode:

Theorem trans:  $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$ 



#### **Proof tactics**

- Some of the basic predefined Coq tactics (some examples in files Oslo\_basics.v and Oslo\_basics\_1b.v)
  - Conjunction
    - \* elim: Use of the elimination rule
    - ★ split: Splits the conjunction into two subgoals
    - ★ Examples:

Theorem conj: A/B->A.

- Theorem conj:  $B/(A/C) \rightarrow A/B$ .
- Disjunction
  - ★ Elim: elimination rule
  - ★ Left,Right: deals with one of the two disjuncts Theorem disj: (B\/(B\/C))/\(A\/B)->A\/B.
- Implication (⇒) and Forall
  - ★ intro(s)
  - \star apply



#### **Proof tactics**

- Existential
  - exists t: instantiates an existential variable
- Equality (=)
  - reflexivity, symmetry, transitivity: the usual properties of equality
  - congruence: used when a goal is solvable after a series of rewrites
  - rewrite, subst: rewrites an element of the equation with the other element of the equation. Subst is used when one of the terms is a variable



#### Proof tactics - exists, elim

• Imagine we want to prove the following:

Parameter P: nat -> Prop. Theorem EXISTS: P 5-> exists n: nat, P n.

• We can use the tactic *exists* to substitute 5 for *n* and prove the goal (example in Oslo\_basics\_1b.v)



• The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)



- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory



- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory
  - In principle, all semantic theories can be implemented in Coq (the system is expressive enough)



- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory
  - In principle, all semantic theories can be implemented in Coq (the system is expressive enough)
    - ★ Shallow vs Deep embedding
- Some toy illustrative examples



- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory
  - In principle, all semantic theories can be implemented in Coq (the system is expressive enough)
    - ★ Shallow vs Deep embedding
- Some toy illustrative examples
  - Montagovian Type-shifters (file type\_shifters.v)
  - Some toy TTR examples (Records.v)
  - Retoré's dot-types and polymorphic conjunction (file MontagovianLexiconToy.v)



- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory
  - In principle, all semantic theories can be implemented in Coq (the system is expressive enough)
    - ★ Shallow vs Deep embedding
- Some toy illustrative examples
  - Montagovian Type-shifters (file type\_shifters.v)
  - Some toy TTR examples (Records.v)
  - Retoré's dot-types and polymorphic conjunction (file MontagovianLexiconToy.v)
  - Champollion's coordination paper (formalized part of the account as a test case to check correctness (it works!)) (file Champollion.v)

- The idea is simple: formalize your semantic account and check that is correct (type-checks, correct entailments etc.)
  - Coq speaks an MTT, so MTT accounts can be easily implemented without having to define the theory
  - In principle, all semantic theories can be implemented in Coq (the system is expressive enough)
    - ★ Shallow vs Deep embedding
- Some toy illustrative examples
  - Montagovian Type-shifters (file type\_shifters.v)
  - Some toy TTR examples (Records.v)
  - Retoré's dot-types and polymorphic conjunction (file MontagovianLexiconToy.v)
  - Champollion's coordination paper (formalized part of the account as a test case to check correctness (it works!)) (file Champollion.v)

- Some more elaborate examples in MTTs
- MTT fragment that deals with entailment cases from the FraCaS (file MTT\_fragment\_for\_FraCaS.v)
- Identity criteria (an older version of the theory presented on Monday but still works!) (file individuationnew.v)



#### • Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)



S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

#### • Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

Leverages two well-studied tools



- Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)
  - Leverages two well-studied tools
    - ★ Grammatical Framework [Ranta(2011)]



#### • Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

- Leverages two well-studied tools
  - ★ Grammatical Framework [Ranta(2011)]
  - \star Coq
- Uses the GF FraCaS treebank



- Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)
  - Leverages two well-studied tools
    - ★ Grammatical Framework [Ranta(2011)]
    - \star Coq
  - Uses the GF FraCaS treebank
  - Then, every syntactic construction is mapped to a (compositional) semantics



- Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)
  - Leverages two well-studied tools
    - ★ Grammatical Framework [Ranta(2011)]
    - \star Coq
  - Uses the GF FraCaS treebank
  - Then, every syntactic construction is mapped to a (compositional) semantics
  - Reasoning is performed



- We use Ljünglof's FraCaS treebank and take these trees to their semantic counterparts
- The structure of the semantic representation
  - Every GF syntactic category C is mapped to a Coq Set, noted [[C]].
  - **Q** GF Functional types are mapped compositionally :  $\llbracket A \to B \rrbracket = \llbracket A \rrbracket \to \llbracket B \rrbracket$
  - Every GF syntactic construction function f:X is mapped to a function [[f]] such that [[f]]: [[X]].
  - GF function applications are mapped compositionally:
     [[t(u)]] = [[t]]([[u]]).

Image: A math a math

#### Sentences

- ▶ We interpret sentences as propositions: **[[S]]** = Prop.
- ▶ To verify that P entails H, we prove the proposition  $\llbracket P \rrbracket \to \llbracket H \rrbracket$ .

Definition S := Prop.

#### Common Nouns

Predicates over an abstract object type

Parameter object : Set. Definition CN := object->Prop.



Verb phrases

▶ Parameterize over the *noun* of the subject (using ∏ types) Definition VP := forall (subjectClass : CN) object -> Prop.



Adjectives

Functions from cn to cn (predicates to predicates)

Definition A :=  $CN \rightarrow CN$ .

Different classes of adjectives are captured using coercions (subtyping).
 All special classes of adjectives are subtypes of A.

Definition IntersectiveA := object -> Prop. Definition wkIntersectiveA : IntersectiveA -> A := fun a cn (x:object) => a x /\ cn x. Coercion wkIntersectiveA : IntersectiveA >-> A.

- Provision is made for intersective, subsective, privative and non-committal adjectives
- For a tutorial of how the system works, see here: tutorial



#### • Covers almost half of the suite (174 examples)



S. Chatzikyriakidis

NASSLLI 2018, Carnegie Mellon

- Covers almost half of the suite (174 examples)
  - 1. Quantifiers
  - 2. Plurals
  - 3. Adjectives
  - 4. Comparatives
  - 5. Attitudes
  - Interesting to note that no complete run of the suite has been made yet!



- Covers almost half of the suite (174 examples)
  - 1. Quantifiers
  - 2. Plurals
  - 3. Adjectives
  - 4. Comparatives
  - 5. Attitudes
  - Interesting to note that no complete run of the suite has been made yet!



#### Some sample FraCaS examples

A Swede won the Nobel Prize.
 Every Swede is Scandinavian.
 Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]



#### Some sample FraCaS examples

- (3) A Swede won the Nobel Prize.
   Every Swede is Scandinavian.
   Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]
- (4) No delegate finished the report on time..
   Did any Scandinavian delegate finish the report on time? [No, FraCaS 070]



4 A I I I I I

#### Evaluation

 The following table presents the results (Ours) as well as a comparison with the approach in Mineshima et al. (MINE, 2015), Bos (Nut, 2008) and Abzianidze (Langpro, 2015)

|   | Section      | # examples | Ours | MINE | Nut  | Langpro  |
|---|--------------|------------|------|------|------|----------|
| 1 | Quantifiers  | 75         | .96  | .77  | .53  | .93 (44) |
| 2 | Plurals      | 33         | .76  | .67  | .52  | .73 (24) |
| 3 | Adjectives   | 22         | .95  | .68  | .32  | .73 (12) |
| 4 | Comparatives | 31         | .56  | .48  | .45  | -        |
| 5 | Attitudes    | 13         | .85  | .77  | .46  | .92 (9)  |
| 6 | Total        | 174 (181)  | 0.83 | 0.69 | 0.50 | 0.85     |

• The approach by Abzianidze has an accuracy of 0.85 without involving the comparative section. If this section is taken out, our system's accuracy rises to 0.88

< A → A →

in probability

#### • MTTs as foundational languages for formal



#### • MTTs as foundational languages for formal

Formally, well-studied



#### • MTTs as foundational languages for formal

- Formally, well-studied
- Expressively adequate



#### • MTTs as foundational languages for formal

- Formally, well-studied
- Expressively adequate
- Proof-theoretically specified, supporting effecting reasoning



#### • MTTs as foundational languages for formal

- Formally, well-studied
- Expressively adequate
- Proof-theoretically specified, supporting effecting reasoning
- State of maturity of both MTT semantics and proof assistant technology
  - Use proof assistant technology and MTTs for formal verification and inference



N.G. de Bruijn.

#### A survey of the project AUTOMATH.

In J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

#### Georges Gonthier.

A computer-checked proof of the Four Colour Theorem.

2005.

URI

http://research.microsoft.com/~{}gonthier/4colproof.pdf.

#### Artur Korniłowicz.

A proof of the jordan curve theorem via the brouwer fixed point theorem.

2007.

#### Thomas C Hales.

The jordan curve theorem, formally and informally.

American Mathematical Monthly, 114(10):882-894

S. Chatzikyriakidis

- Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff.
   A formally verified proof of the prime number theorem.
   ACM Transactions on Computational Logic (TOCL), 9(1):2, 2007.
- Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell OConnor, Sidi Ould Biha, et al.

A machine-checked proof of the odd order theorem.

In Interactive Theorem Proving, pages 163–179. Springer, 2013.

A. Ranta.

*Grammatical Framework: Programming with Multilingual Grammar.* CSLI Publications, 2011.

