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Started in the early 60s

◮ The need for formally verified proofs
◮ The AUTOMATH project. Late 60’s (see [de Bruijn(1980)] for a

survey)

⋆ Aim: a system for the mechanic verification of mathematics
⋆ Several AUTOMATH systems have been implemented
⋆ The first system to practically exploit the Curry-Howard isomorphism
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⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem ([Gonthier(2005)], Coq)
⋆ Jordan curve theorem ([Korni lowicz(2007), Hales(2007)], Mizar and

HOL respectively)
⋆ The prime number theorem

([Avigad et al.(2007)Avigad, Donnelly, Gray, and Raff], Isabelle)
⋆ Feit-Thompson theorem

([Gonthier et al.(2013)Gonthier, Asperti, Avigad, Bertot, Cohen, Garillot, Le
Coq (170.000 lines of code!))
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INRIA project

◮ Started in 1984 as an implementation of Coquand’s Calculus of
Constructions (CoC)

◮ Extension to the Calculus of Inductive Constructions (CiC) in 1991
◮ Coq offers a program specification and mathematical higher-level

language called Gallina based on CiC
◮ CiC combines both expressive higher-order logic as well as a richly

typed functional programming language

Winner of the 2013 ACM software system award

A collection of 100 mathematical theorems proven in Coq:
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/
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An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs
◮ Equipped with libraries for efficient arithmetics in N, Z and Q, libraries

about lists, finite sets and finite maps, libraries on abstract sets,
relations and classical analysis among others

◮ Built-in automated tactics that can help in the automation of all or
part of the proof process

◮ Allows the definition of new proof tactics by the user
⋆ The user can develop automated tactics by using this feature
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Installing Coq

Easy to install (http://coq.inria.fr/download)

Use the installer or can get Coq via Macports or HomeBrew

There is an interface for emacs, Proof General (provides support for a
number of proof assistants incl. Coq, Isabelle, HOL among others)

◮ Get Proof-general here: https://proofgeneral.github.io/
◮ Customize your emacs .init file according to the instructions in there
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An example of a simple proof

Transitivity of implication: (P → Q) → (Q → R) → (P → R) (file
Oslo basics.v)

◮ Important note: all examples discussed in the talk can be found here:
Github repository

What is needed before we get into proof mode
◮ Declaring P ,Q,R as propositional variables

Variables P Q R:Prop.

◮ With this declaration at hand, we can get into proof mode:

Theorem trans: (P->Q)->(Q->R)->(P->R)
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Proof tactics

Some of the basic predefined Coq tactics (some examples in files
Oslo basics.v and Oslo basics 1b.v)

◮ Conjunction
⋆ elim: Use of the elimination rule
⋆ split: Splits the conjunction into two subgoals
⋆ Examples:

Theorem conj: A/\B->A.

Theorem conj: B/\(A/\C)->A/\B.

◮ Disjunction
⋆ Elim: elimination rule
⋆ Left,Right: deals with one of the two disjuncts

Theorem disj: (B\/(B\/C))/\(A\/B)->A\/B.

◮ Implication (⇒) and Forall
⋆ intro(s)
⋆ apply
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Proof tactics

Existential

◮ exists t: instantiates an existential variable

Equality (=)
◮ reflexivity, symmetry, transitivity : the usual properties of equality
◮ congruence: used when a goal is solvable after a series of rewrites
◮ rewrite, subst: rewrites an element of the equation with the other

element of the equation. Subst is used when one of the terms is a
variable
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Proof tactics - exists, elim

Imagine we want to prove the following:

Parameter P: nat -> Prop.

Theorem EXISTS: P 5-> exists n: nat, P n.

We can use the tactic exists to substitute 5 for n and prove the goal
(example in Oslo basics 1b.v)
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Formal Checking/Reasoning

Some more elaborate examples in MTTs

MTT fragment that deals with entailment cases from the FraCaS (file
MTT fragment for FraCaS.v)

Identity criteria (an older version of the theory presented on Monday
but still works!) (file individuationnew.v)
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The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank
◮ Then, every syntactic construction is mapped to a (compositional)

semantics

S. Chatzikyriakidis NASSLLI 2018, Carnegie Mellon 15/23



The FraCoq system

Bernardy and Chatzikyriakidis (2017) (file FraCoq.v)

◮ Leverages two well-studied tools

⋆ Grammatical Framework [Ranta(2011)]
⋆ Coq

◮ Uses the GF FraCaS treebank
◮ Then, every syntactic construction is mapped to a (compositional)

semantics
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The FraCoq system

We use Ljünglof’s FraCaS treebank and take these trees to their
semantic counterparts

The structure of the semantic representation

1 Every GF syntactic category C is mapped to a Coq Set, noted [[C ]].
2 GF Functional types are mapped compositionally : [[A → B]] =

[[A]] → [[B]]
3 Every GF syntactic construction function f :X is mapped to a function

[[f ]] such that [[f ]] : [[X ]].
4 GF function applications are mapped compositionally:

[[t(u)]] = [[t]]([[u]]).
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The FraCoq system

Sentences

◮ We interpret sentences as propositions: [[S ]] = Prop.
◮ To verify that P entails H , we prove the proposition [[P]] → [[H ]].

Definition S := Prop.

Common Nouns
◮ Predicates over an abstract object type

Parameter object : Set.

Definition CN := object->Prop.
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The FraCoq system

Verb phrases

◮ Parameterize over the noun of the subject (using Π types)

Definition VP := forall (subjectClass : CN)

object -> Prop.
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The FraCoq system

Adjectives

◮ Functions from cn to cn (predicates to predicates)

Definition A := CN -> CN.

◮ Different classes of adjectives are captured using coercions (subtyping).
All special classes of adjectives are subtypes of A.

Definition IntersectiveA := object -> Prop.

Definition wkIntersectiveA : IntersectiveA -> A

:= fun a cn (x:object) => a x /\ cn x.

Coercion wkIntersectiveA : IntersectiveA >-> A.

◮ Provision is made for intersective, subsective, privative and
non-committal adjectives

For a tutorial of how the system works, see here: tutorial
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Some sample FraCaS examples

(1) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]
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Some sample FraCaS examples

(3) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]

(4) No delegate finished the report on time..

Did any Scandinavian delegate finish the report on time? [No,
FraCaS 070]
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Evaluation

The following table presents the results (Ours) as well as a
comparison with the approach in Mineshima et al. (MINE, 2015), Bos
(Nut, 2008) and Abzianidze (Langpro, 2015)

Section # examples Ours MINE Nut Langpro

1
2
3
4
5
6

Quantifiers
Plurals
Adjectives
Comparatives
Attitudes
Total

75
33
22
31
13
174 (181)

.96

.76

.95

.56

.85
0.83

.77

.67

.68

.48

.77
0.69

.53

.52

.32

.45

.46
0.50

.93 (44)

.73 (24)

.73 (12)
-
.92 (9)
0.85

The approach by Abzianidze has an accuracy of 0.85 without
involving the comparative section. If this section is taken out, our
system’s accuracy rises to 0.88
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Conclusions/Future Research

MTTs as foundational languages for formal
◮ Formally, well-studied
◮ Expressively adequate
◮ Proof-theoretically specified, supporting effecting reasoning

State of maturity of both MTT semantics and proof assistant
technology

◮ Use proof assistant technology and MTTs for formal verification and
inference
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