Formal Semantics in Modern Type Theories

Stergios Chatzikyriakidis
CLASP, Department of Philosophy, Linguistics and Theory of Science University of Gothenburg

June 25, 2018
centre for
linguistic theory
and studies in probability

Structure

- What are MTTs?
- Brief intro to MTTs
- Examples of using MTTs for NL semantics
- Conclusions
centre for

Modern Type Theories

- Martin Löf's TT and its variants
centre for
linguistic theory
and studies in probability

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
centre for

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
- Very rough differences with Simple Type Theory (STT)

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
- Very rough differences with Simple Type Theory (STT)
* Rich typing

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
- Very rough differences with Simple Type Theory (STT)
* Rich typing
\star Dependent typing

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
- Very rough differences with Simple Type Theory (STT)
* Rich typing
\star Dependent typing
* Type universes

Modern Type Theories

- Martin Löf's TT and its variants
- Calculus of Constructions [Coquand and $\operatorname{Huet}(1988)$]
- Unifying Theory of dependent Types (UTT) [Luo(1994)]
- Very rough differences with Simple Type Theory (STT)
* Rich typing
\star Dependent typing
\star Type universes
\star Proof theoretic specification

Modern Type Theories

- Important work on the formalization of mathematics
centre for

Modern Type Theories

- Important work on the formalization of mathematics
- Alternative foundations for mathematics (Homotopy Type Theory) [Voevodsky(2015)]
- Formalization using proof assistants: systems implementing constructive type theories that help in the formalization of mathematics and program verification

Modern Type Theories

- Important work on the formalization of mathematics
- Alternative foundations for mathematics (Homotopy Type Theory) [Voevodsky(2015)]
- Formalization using proof assistants: systems implementing constructive type theories that help in the formalization of mathematics and program verification
* prime examples: Agda [Agda 2008()], Coq [Coq 2007()]

Modern Type Theories and linguistic semantics

- Starts with the seminal work by Ranta [Ranta(1994)] and earlier (e.g. Sundholm [Sundholm(1989)])
centre for

Modern Type Theories and linguistic semantics

- Starts with the seminal work by Ranta [Ranta(1994)] and earlier (e.g. Sundholm [Sundholm(1989)])
- Many more after that [Boldini(2000), Cooper(2005), Dapoigny and Barlatier(2009), Bekki(2014), Retoré(2013), Grudzinska and Zawadowski(2014), Chatzikyriakidis and Luo(2012), Chatzikyriakidis and Luo(2017a)] among others
- How they are useful and in what ways they are different from STT?

Basic Types: Rich Typing

- In STT, the domain of individuals is monolithic, i.e. one basic entity type (Church's ι or Montague's e type)

Basic Types: Rich Typing

- In STT, the domain of individuals is monolithic, i.e. one basic entity type (Church's ι or Montague's e type)
- Function types for different types of individuals, e.g. man, human are not basic types but function types $(e \rightarrow t)$

Basic Types: Rich Typing

- In STT, the domain of individuals is monolithic, i.e. one basic entity type (Church's ι or Montague's e type)
- Function types for different types of individuals, e.g. man, human are not basic types but function types $(e \rightarrow t)$
- In MTTs, no such restriction exists: the universe of entities CAN be many-sorted

Basic Types：Rich Typing

－In STT，the domain of individuals is monolithic，i．e．one basic entity type（Church＇s ι or Montague＇s e type）
－Function types for different types of individuals，e．g．man，human are not basic types but function types $(e \rightarrow t)$
－In MTTs，no such restriction exists：the universe of entities CAN be many－sorted
－Arbitrary number of types can be available giving more structure to the domain of individuals，e．g．man，chair：Type（this is the approach by Ranta，Boldini，Luo and colleagues among others）
＊This is known as the CNs－as－Types approach ［Chatzikyriakidis and Luo（2016（to appear）．）］
\star However，this is a choice！Other researchers like Bekki and colleagues working on MTTs，prefer to interpret CNs more standarly，i．e．as predicates［Bekki（2014）］

Basic Types: Rich Typing

- A consequence of many-sortedness
centre for
linguistic theory
and studies in probability

Basic Types: Rich Typing

- A consequence of many-sortedness
- Common Nouns CAN be interpreted as Types!

Basic Types: Rich Typing

- A consequence of many-sortedness
- Common Nouns CAN be interpreted as Types!

MS man: $e \rightarrow t$
MTTs man: Type
centre for

Basic Types: Rich Typing

- Selectional restrictions as type mismatch: the ham sandwich talks
centre for

Basic Types: Rich Typing

- Selectional restrictions as type mismatch: the ham sandwich talks
- Talk: human \rightarrow Prop
- the ham: ham (with ham:Type)
- Functional application not possible!
centre for

Subtyping

- A further consequence of a rich selection of types
centre for
linguistic theory
and studies in probability

Subtyping

- A further consequence of a rich selection of types
- Subtyping mechanism: otherwise the system becomes too rigid
- Even things like the man walks would not be possible with no subtyping mechanism
centre for

Subtyping

- A further consequence of a rich selection of types
- Subtyping mechanism: otherwise the system becomes too rigid
- Even things like the man walks would not be possible with no subtyping mechanism
\star walk:Animal \rightarrow Prop
* the_man:Man (with man:Type)
\star Fine if man \leq human

Different Systems of Subtyping

- Classic case: Subsumptive subtyping

$$
\frac{a: A, A \leq B}{a: B}
$$

- a term of type A can be used in a context where a term of type B is required instead just in case $A \leq B$

Different Systems of Subtyping

- Record Type Subsumption: a type of subsumptive subtyping for TTR

$$
\left[\begin{array}{lll}
x & : & \text { Man } \\
y & : & \text { Donkey } \\
e & : & \operatorname{own}(x, y)
\end{array}\right]
$$

will also be of type

$$
\left[\begin{array}{lll}
x & : & \text { Man } \\
y & : & \text { Donkey }
\end{array}\right]
$$

and also of type

$$
[x: M a n]
$$

Different Systems of Subtyping

- Coercive subtyping (Luo and Colleagues, Asher and colleagues, Retoré and colleagues)
centre for

Different Systems of Subtyping

- Coercive subtyping (Luo and Colleagues, Asher and colleagues, Retoré and colleagues)
- Can be seen as an abbreviation mechanism
centre for

Different Systems of Subtyping

- Coercive subtyping (Luo and Colleagues, Asher and colleagues, Retoré and colleagues)
- Can be seen as an abbreviation mechanism
$\star A$ is a (proper) subtype of $B(A<B)$ if there is a unique implicit coercion c from type A to type B
\star An object a of type A can be used in any context $\mathfrak{C}_{B}[-]$ that expects an object of type $B: \mathfrak{C}_{B}[a]$ is legal (well-typed) and equal to $\mathfrak{C}_{B}[c(a)]$.

Different Systems of Subtyping

- Coercive subtyping (Luo and Colleagues, Asher and colleagues, Retoré and colleagues)
- Can be seen as an abbreviation mechanism
$\star A$ is a (proper) subtype of $B(A<B)$ if there is a unique implicit coercion c from type A to type B
\star An object a of type A can be used in any context $\mathfrak{C}_{B}[-]$ that expects an object of type $B: \mathfrak{C}_{B}[a]$ is legal (well-typed) and equal to $\mathfrak{C}_{B}[c(a)]$.
- Metatheoretically more advantageous: canonicity is preserved
- Long story!

Complex Types and Dependent Typing

- STT involves basic types and function types constructed out of the basic types
centre for

Complex Types and Dependent Typing

- STT involves basic types and function types constructed out of the basic types
- MTTs offer a range of other more advanced typing structures

Complex Types and Dependent Typing

- STT involves basic types and function types constructed out of the basic types
- MTTs offer a range of other more advanced typing structures
- Dependent Typing
* A family of types that may depend on some value

Complex Types and Dependent Typing

- Dependent Types Π and Σ

Complex Types and Dependent Typing

- Dependent Types Π and Σ
- When A is a type and P is a predicate over $A, \Pi x: A \cdot P(x)$ is the dependent function type that stands for the universally quantified proposition $\forall x$:A. $P(x)$
- Π for polymorphic typing: $\Pi A: C N .(A \rightarrow$ Prop $) \rightarrow(A \rightarrow$ Prop $)$

Complex Types and Dependent Typing

- Dependent Types Π and Σ
- When A is a type and P is a predicate over $A, \Pi x: A \cdot P(x)$ is the dependent function type that stands for the universally quantified proposition $\forall x$:A. $P(x)$
- Π for polymorphic typing: $\Pi A: C N .(A \rightarrow$ Prop $) \rightarrow(A \rightarrow$ Prop $)$
- A is a type and B is an A-indexed family of types, then $\sum x: A \cdot B(x)$, is a type, consisting of pairs (a, b) such that a is of type A and b is of type $B(a)$.
- Adjectival modification as involving Σ types [Ranta(1994), Chatzikyriakidis and Luo(2017b)]: $\llbracket h e a v y _b o o k \rrbracket=\Sigma x$: book.heavy (x)

Intro to MTTs-Universes

- Universes
- A universe is a collection of (the names of) types into a type (Martin Löf, 1984).

Intro to MTTs-Universes

- Universes
- A universe is a collection of (the names of) types into a type (Martin Löf, 1984).
- Universes can help semantic representations. For example, one may use the universe CN: Type of all common noun interpretations and, for each type A that interprets a common noun, there is a name \bar{A} in CN. For example,

$$
\overline{m a n}: \mathrm{CN} \quad \text { and } \quad T_{\mathrm{CN}}(\overline{m a n})=\operatorname{man}
$$

In practice, we do not distinguish a type in CN and its name by omitting the overlines and the operator T_{CN} by simply writing, for instance, man: CN.

Intro to MTTs-Universes

- Universe of linguistic types (LType) [Chatzikyriakidis and Luo(2012)]
centre for

Intro to MTTs-Universes

- Universe of linguistic types (LType) [Chatzikyriakidis and Luo(2012)]
- Introduced to deal with conjoinable types
centre for

Intro to MTTs-Universes

- Universe of linguistic types (LType) [Chatzikyriakidis and Luo(2012)]
- Introduced to deal with conjoinable types
- A universe over which the coordination operator extends

$$
\begin{aligned}
& \overline{\text { PType : Type }} \overline{\text { Prop:PType }} \frac{\text { A:LType } P(x): \text { PType }[x: A]}{\Pi x: A \cdot P(x): P T y p e} \\
& \overline{\text { LType: Type }} \quad \overline{\mathrm{CN}: \text { LType }} \quad \frac{A: \mathrm{CN}}{A: \text { LType }} \quad \frac{A: \text { PType }}{A: \text { LType }}
\end{aligned}
$$

Contexts

- Context in type theory is a formal notion
centre for
linguistic theory
and studies in probability

Contexts

- Context in type theory is a formal notion
- Various way of thinking about contexts
* List of variable declarations, where variables stand for proofs of the corresponding assumptions
centre for

Contexts

- Context in type theory is a formal notion
- Various way of thinking about contexts
* List of variable declarations, where variables stand for proofs of the corresponding assumptions
\star A sequence of type judgements

Contexts

- Context in type theory is a formal notion
- Various way of thinking about contexts
* List of variable declarations, where variables stand for proofs of the corresponding assumptions
\star A sequence of type judgements
\star Formally, a context is an expression of the form:

$$
\Gamma=x_{1}: A_{1}, x_{2}: A_{2}\left(x_{1}\right), \ldots, x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right)
$$

\star A series of types, and a series of proof objects for these types
\star Any type may depend on any of the previous proof objects

Contexts

- They have been used instead of possible worlds for belief intensionality [Ranta(1994), Chatzikyriakidis and Luo(2013)] and also to formalize discourse structure [Ranta(1994), Boldini(2000), Chatzikyriakidis and Luo(2014)]

Contexts

- They have been used instead of possible worlds for belief intensionality [Ranta(1994), Chatzikyriakidis and Luo(2013)] and also to formalize discourse structure [Ranta(1994), Boldini(2000), Chatzikyriakidis and Luo(2014)]
- Consider the following discourse:

Contexts

- They have been used instead of possible worlds for belief intensionality [Ranta(1994), Chatzikyriakidis and Luo(2013)] and also to formalize discourse structure [Ranta(1994), Boldini(2000), Chatzikyriakidis and Luo(2014)]
- Consider the following discourse:

A farmer owns a donkey. He loves it.

- Following the end of the first sentence, we have:

Contexts

- They have been used instead of possible worlds for belief intensionality [Ranta(1994), Chatzikyriakidis and Luo(2013)] and also to formalize discourse structure [Ranta(1994), Boldini(2000), Chatzikyriakidis and Luo(2014)]
- Consider the following discourse:

> A farmer owns a donkey. He loves it.

- Following the end of the first sentence, we have:

$$
x_{1}:(\Sigma x: \operatorname{Farmer})(\Sigma y: \text { Donkey })(\text { own }(x, y))
$$

- The pronouns pick variables already declared using the projection operators (π_{1} and π_{2})

$$
x_{2}:\left(\operatorname { l o v e } \left(\pi_{1}\left(x_{1}\right), \pi_{1}\left(\pi_{2}\left(x_{1}\right)\right)\right.\right.
$$

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human:Type)
centre for

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human:Type)
- Needs to be extended by subtyping, as it stands it fails to capture inferences for intersective and subsective adjectives

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human: Type)
- Needs to be extended by subtyping, as it stands it fails to capture inferences for intersective and subsective adjectives
- For example, from Σ (man, black) it does not follow that something is black or that something is a black human
- [Chatzikyriakidis and Luo(2017b)] and earlier work: Extend the account with subtyping and polymorphic types

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human: Type)
- Needs to be extended by subtyping, as it stands it fails to capture inferences for intersective and subsective adjectives
- For example, from Σ (man, black) it does not follow that something is black or that something is a black human
- [Chatzikyriakidis and Luo(2017b)] and earlier work: Extend the account with subtyping and polymorphic types
- Regular type for intersective adjectives

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human: Type)
- Needs to be extended by subtyping, as it stands it fails to capture inferences for intersective and subsective adjectives
- For example, from Σ (man, black) it does not follow that something is black or that something is a black human
- [Chatzikyriakidis and Luo(2017b)] and earlier work: Extend the account with subtyping and polymorphic types
- Regular type for intersective adjectives
* handsome:human \rightarrow Prop

MTTs in action: Adjectives

- Adjectival modification as involving Σ types [Ranta(1994)]
- As already said, Ranta takes CNs to be types (man, human: Type)
- Needs to be extended by subtyping, as it stands it fails to capture inferences for intersective and subsective adjectives
- For example, from Σ (man, black) it does not follow that something is black or that something is a black human
- [Chatzikyriakidis and Luo(2017b)] and earlier work: Extend the account with subtyping and polymorphic types
- Regular type for intersective adjectives
* handsome:human \rightarrow Prop
- polymorphic for subsectives
\star skilful:ПA : cn. ($A \rightarrow$ Prop)

MTTs in action: Adjectives

- Basic inferential properties are captured via typing, no meaning postulates are needed
centre for

MTTs in action: Adjectives

- Basic inferential properties are captured via typing, no meaning postulates are needed
- The first projection π_{1} of the Σ is declared as a coercion
centre for

MTTs in action: Adjectives

- Basic inferential properties are captured via typing, no meaning postulates are needed
- The first projection π_{1} of the Σ is declared as a coercion
- $\Sigma($ man, black $) \leq$ Man
centre for

MTTs in action: Adjectives

- Basic inferential properties are captured via typing, no meaning postulates are needed
- The first projection π_{1} of the Σ is declared as a coercion
- $\Sigma($ man, black $) \leq$ Man
* Thus, from black man we can infer man
- Subtyping propagates through the constructors: if $A \leq B$ then forall $P: C \rightarrow \operatorname{Prop}$ (with $A, B \leq C$), $\Sigma(A, P) \leq \Sigma(B, P)$
\star This means that: $\Sigma($ man, black $) \leq \Sigma($ human, black $)$

MTTs in action: Adjectives

- Subsective adjectives?
centre for
linguistic theory
and studies in probability

MTTs in action: Adjectives

- Subsective adjectives?
- Polymorphic type restricted to the CNs class
centre for
linguistic theory
and studies in probability

MTTs in action: Adjectives

- Subsective adjectives?
- Polymorphic type restricted to the CNs class
- The modification involves an argument which is the class restriction, so $\Sigma($ surgeon, skilful(surgeon))
centre for
linguistic theory
and studies in probability

MTTs in action: Adjectives

- Subsective adjectives?
- Polymorphic type restricted to the CNs class
- The modification involves an argument which is the class restriction, so Σ (surgeon, skilful(surgeon))
\star It does not follow that a skilful surgeon is a skilful human: $\Sigma($ surgeon, skilful(surgeon) $) \nRightarrow \Sigma($ human, skilful(surgeon) $)$
$\star \Sigma$ (human, skilful(surgeon)) is not well-typed, skilful(surgeon):surgeon \rightarrow Prop amd our π_{1} is of type human

MTTs in action: Adjectives

- Intensional adjectives: alleged
centre for
linguistic theory
and studies in probability

MTTs in action: Adjectives

- Intensional adjectives: alleged
- A belief context: a sequence of judgments a specific human holds
- $\Gamma_{p}=x_{1}: A_{1}, \ldots, x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right)$

MTTs in action: Adjectives

- Intensional adjectives: alleged
- A belief context: a sequence of judgments a specific human holds
- $\Gamma_{p}=x_{1}: A_{1}, \ldots, x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right)$
- We can similarly define allegation contexts
- Let $A_{N}: \mathrm{CN}$ is the interpretation of a common noun N. Then: alleged $N=\Sigma a$: Human. $\Gamma_{a}\left(A_{N}\right)$
- An alleged N : has been alleged by someone that it is an N
* Belief and allegation contexts can be kept separate

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
centre for
linguistic theory
and studies in probability

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
- E.g. to be considered healthy one has to be healthy w.r.t a number of dimensions (blood pressure, cholesterol etc.)

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
- E.g. to be considered healthy one has to be healthy w.r.t a number of dimensions (blood pressure, cholesterol etc.)
\star Involves universal quantification over dimensions
- The antonyms of these type of multidimensional adjectives existentially quantify over dimensions

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
- E.g. to be considered healthy one has to be healthy w.r.t a number of dimensions (blood pressure, cholesterol etc.)
\star Involves universal quantification over dimensions
- The antonyms of these type of multidimensional adjectives existentially quantify over dimensions
\star For one to be sick, only one dimension is needed
- We formulate this idea by Sassoon (2008) as follows:

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
- E.g. to be considered healthy one has to be healthy w.r.t a number of dimensions (blood pressure, cholesterol etc.)
\star Involves universal quantification over dimensions
- The antonyms of these type of multidimensional adjectives existentially quantify over dimensions
\star For one to be sick, only one dimension is needed
- We formulate this idea by Sassoon (2008) as follows:
- We define an inductive type health
\star Inductive $\llbracket H e a l t h \rrbracket: D:=$ Heart \mid Blood_pressure \mid Cholesterol

Adjectival Modification/Multidimensional Adjectives

- Quantification across different dimensions
- E.g. to be considered healthy one has to be healthy w.r.t a number of dimensions (blood pressure, cholesterol etc.)
\star Involves universal quantification over dimensions
- The antonyms of these type of multidimensional adjectives existentially quantify over dimensions
\star For one to be sick, only one dimension is needed
- We formulate this idea by Sassoon (2008) as follows:
- We define an inductive type health
\star Inductive $\llbracket H e a l t h \rrbracket: D:=$ Heart \mid Blood_pressure \mid Cholesterol
- Then we define:
\star healthy $=\lambda x$:Human. $\forall h$:Health.Healthy $(h)(x)$
\star sick $=\lambda x$:Human. $\neg(\forall h$:Health.Healthy $(h)(x))$
- For gradability and gradable adjectives have a look at [Chatzikyriakidis and Luo(2017a)]

and studies in probability

Adverbial Modification

- Typing issues: How are we going to type adverbs in a many sorted TT?
centre for
linguistic theory
and studies in probability

Adverbial Modification

- Typing issues: How are we going to type adverbs in a many sorted TT?
- Two basic types
centre for

Adverbial Modification

- Typing issues: How are we going to type adverbs in a many sorted TT?
- Two basic types
\star Sentence adverbs: Prop \rightarrow Prop
\star VP-adverbs: $\Pi A: C N .(A \rightarrow$ Prop $) \rightarrow(A \rightarrow$ Prop $)$
\star Polymorphic type: Depends on the choice of A
* Given that we are talking about predicates, depends on the choice of the argument
\star walk:Animal \rightarrow Prop \Rightarrow ADV(walk):(Animal \rightarrow Prop)
\star drive:Human \rightarrow Prop \Rightarrow ADV (drive):(Human \rightarrow Prop)

Adverbial Modification: Veridicality

- Veridical Adverbials when applied to their argument, imply their argument
centre for

Adverbial Modification: Veridicality

- Veridical Adverbials when applied to their argument, imply their argument
- John opened the door quickly \Rightarrow John opened the door
- Fortunately, John is an idiot \Rightarrow John is an idiot

Adverbial Modification: Veridicality

- Veridical Adverbials when applied to their argument, imply their argument
- John opened the door quickly \Rightarrow John opened the door
- Fortunately, John is an idiot \Rightarrow John is an idiot
- Non-veridical adverbs do not have this property
- John allegedly opened the door \nRightarrow John opened the door

Adverbial Modification: Veridicality

- Define an auxiliary object first, then define the adverb as its first projection
- VER $P_{\text {Prop }}: \Pi v:$ Prop. $\Sigma p:$ Prop.p $\supset v$
- $A D V_{\text {ver-Prop }}=\lambda v: \operatorname{Prop} . \pi_{1}\left(V E R_{\text {Prop }}(v)\right)$
- An adverb like fortunately will be defined as:
- fortunately $=\lambda v:$ Prop. $\pi_{1}\left(V E R_{\text {Prop }}(v)\right)$

Adverbial Modification: Veridicality

- Define an auxiliary object first, then define the adverb as its first projection
- VER Prop $: \Pi v:$ Prop. $\Sigma p:$ Prop.p $\supset v$
- $A D V_{\text {ver-Prop }}=\lambda v: \operatorname{Prop} . \pi_{1}\left(V E R_{\text {Prop }}(v)\right)$
- An adverb like fortunately will be defined as:
- fortunately $=\lambda v:$ Prop. $\pi_{1}\left(V E R_{\text {Prop }}(v)\right)$
- Consider the following: Fortunately, John went \Longrightarrow John went
- The second component of $\left(V E R_{\text {Prop }}(v)\right)$ is a proof of fortunately $(v) \Rightarrow v$
- Taking v to be John went, the inference follows

Adverbial Modification: Intensional/domain adverbials

- Use of TT contexts in this case as well
- allegedly $=\lambda P$: Prop. $\exists p$:human, $A_{p}(P)$
- Someone has alleged that $P\left(A_{p}\right.$ is an agent's allegation context [Chatzikyriakidis and Luo(2017b)]
centre for
linguistic theory
and studies in probability

Adverbial Modification: Intensional/domain adverbials

- Use of TT contexts in this case as well
- allegedly $=\lambda P$: Prop. $\exists p$:human, $A_{p}(P)$
- Someone has alleged that P (A_{p} is an agent's allegation context [Chatzikyriakidis and Luo(2017b)]
- Introduction of intenTional contexts: Contexts including the intentions (rather than the beliefs) of an agent. We can use this idea for adverbs like intentionally:
- intentionally $=\lambda x:$ human. $\lambda P: \llbracket h u m a n \rrbracket . \lambda P: \operatorname{Prop} . I_{x}(P(x)) \wedge \Gamma(P(x))$

Adverbial Modification: Intensional/domain adverbials

- Use of TT contexts in this case as well
- allegedly $=\lambda P:$ Prop. $\exists p$:human, $A_{p}(P)$
- Someone has alleged that $P\left(A_{p}\right.$ is an agent's allegation context [Chatzikyriakidis and Luo(2017b)]
- Introduction of intenTional contexts: Contexts including the intentions (rather than the beliefs) of an agent. We can use this idea for adverbs like intentionally:
- intentionally $=\lambda x$: human. $\lambda P: \llbracket h u m a n \rrbracket . \lambda P:$ Prop. $I_{x}(P(x)) \wedge \Gamma(P(x))$
- Domain adverbs, e.g. botanically, mathematically
- botanically $=\lambda P:$ Prop. $\Gamma_{B} P$
- Intensionality without possible worlds

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
centre for

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
(2) John picked up and mastered the book.

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
(3) John picked up and mastered the book.
- A physical and an informational dimension of book

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
(4) John picked up and mastered the book.
- A physical and an informational dimension of book
- The idea is that book is a complex type with both a physical and an informational aspect

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
(5) John picked up and mastered the book.
- A physical and an informational dimension of book
- The idea is that book is a complex type with both a physical and an informational aspect
\star We introduce the dot type constructor, forming complex types from simple types
\star To form a dot type $A \bullet B$, its individual components should not share parts
\star E.g. PhY • PHY cannot be a dot-type
\star The dot-type is a subtype of its individual parts

Co-predication and Dot-types

- Predicates requiring different kinds of arguments, are used in coordination and applied to the "same" CN argument
(6) John picked up and mastered the book.
- A physical and an informational dimension of book
- The idea is that book is a complex type with both a physical and an informational aspect
\star We introduce the dot type constructor, forming complex types from simple types
\star To form a dot type $A \bullet B$, its individual components should not share parts
\star E.g. PhY • PHY cannot be a dot-type
\star The dot-type is a subtype of its individual parts
- A scary slide follows!

The rules for dot-types

Formation Rule

$$
\frac{\Gamma \text { valid }\rangle \vdash A: \text { Type }\rangle \vdash B: \text { Type } \quad C(A) \cap C(B)=\emptyset}{\Gamma \vdash A \bullet B: \text { Type }}
$$

Introduction Rule

$$
\frac{\Gamma \vdash a: A}{} \quad \Gamma \vdash b: B \quad \Gamma \vdash A \bullet B: \text { Type }
$$

Elimination Rules

$$
\frac{\Gamma \vdash c: A \bullet B}{\Gamma \vdash p_{1}(c): A} \quad \frac{\Gamma \vdash c: A \bullet B}{\Gamma \vdash p_{2}(c): B}
$$

Computation Rules

$$
\frac{\Gamma \vdash a: A \quad \Gamma \vdash b: B \quad \Gamma \vdash A \bullet B: T y p e}{\Gamma \vdash p_{1}(\langle a, b\rangle)=a: A} \quad \frac{\Gamma \vdash a: A \quad \Gamma \vdash b: B \quad \Gamma \vdash A \bullet B: T y p}{\Gamma \vdash p_{2}(\langle a, b\rangle)=b: B}
$$

Projections as Coercions

$$
\frac{\Gamma \vdash A \bullet B: \text { Type }}{\Gamma \vdash A \bullet B<_{p_{1}} A: \text { Type }} \quad \frac{\Gamma \vdash A \bullet B: \text { Type }}{\Gamma \vdash A \bullet B<_{p_{2}} B: \text { Type }}
$$

Coercion Propagation

$$
\frac{\Gamma \vdash A \bullet B: \text { Type }}{} \quad \Gamma \vdash A^{\prime} \bullet B^{\prime}: \text { Type } \quad \Gamma \vdash A<_{c_{1}} A^{\prime}: \text { Type } \quad \Gamma \vdash B=B^{\prime}: \text { Type }
$$

where $d_{1}\left[c_{1}\right](x)=\left\langle c_{1}\left(p_{1}(x)\right), p_{2}(x)\right\rangle$.

$$
\frac{\Gamma \vdash A \bullet B: \text { Type } \quad \Gamma \vdash A^{\prime} \bullet B^{\prime}: \text { Type } \quad \Gamma \vdash A=A^{\prime}: \text { Type } \quad \Gamma \vdash B<_{c_{2}} B^{\prime}: \text { Type }}{\Gamma \vdash A \bullet B<_{d_{2}\left[c_{2}\right]} A^{\prime} \bullet B^{\prime}: \text { Type }}
$$

where $d_{2}\left[c_{2}\right](x)=\left\langle p_{1}(x), c_{2}\left(p_{2}(x)\right)\right\rangle$.
$\frac{\Gamma \vdash A \bullet B: \text { Type } \quad \Gamma \vdash A^{\prime} \bullet B^{\prime}: \text { Type } \quad \Gamma \vdash A<_{c_{1}} A^{\prime}: \text { Type } \quad \Gamma \vdash B<_{c_{2}} B^{\prime}: \text { Type }}{\Gamma \vdash A \bullet B<_{d\left[c_{1}, c_{2}\right]} A^{\prime} \bullet B^{\prime}: \text { Type }}$
where $d\left[c_{1}, c_{2}\right](x)=\left\langle c_{1}\left(p_{1}(x)\right), c_{2}\left(p_{2}(x)\right)\right\rangle$.

Dot-types

John:Man
picked_up:phy \rightarrow human \rightarrow Prop
mastered:info \rightarrow human \rightarrow Prop
the:ПА: CN. A
book:CN
and: $П А . A \rightarrow A \rightarrow A$
Works because Book \leq Phy •Info \leq Info, Phy
centre for

Dot-types

```
John:Man
picked_up:phy \(\rightarrow\) human \(\rightarrow\) Prop
mastered:info \(\rightarrow\) human \(\rightarrow\) Prop
the:ПА:CN.A
book:CN
and:ПA. \(A \rightarrow A \rightarrow A\)
Works because Book \(\leq\) Phy •Info \(\leq\) Info, Phy
```

- Individuation criteria: John picked up and mastered three books
centre for
linguistic theory
and studies in probability

Dot-types

John:Man
picked_up:phy \rightarrow human \rightarrow Prop
mastered:info \rightarrow human \rightarrow Prop
the:ПA:CN.A
book:CN
and:ПA.A $\rightarrow A \rightarrow A$
Works because Book \leq Phy •Info \leq Info, Phy

- Individuation criteria: John picked up and mastered three books
- Every CN carries its own criteria of identity: CNs as setoids

Criteria of Identity/Individuation: CNs as Setoids

- Individuation is the process by which objects in a particular collection are distinguished from one another
- Provides us with means to count and a sameness criterion
- In linguistic semantics, individuation is related to the idea that a CN may have its own identity criterion for individuation [Geach(1962)]
- Mathematically, the association of an equivalence relation (the identity criterion) CNs
- In constructive mathematics, a set or a type is indeed a collection of objects together with an equivalence relation that serves as identity criterion of that collection

CNs as Setoids

- CNs are not just types
- Types plus an identity criterion for that specific CN
(7) $(A,=)$
where A is a type and $=: A \rightarrow A \rightarrow$ Prop is an equivalence relation over A
- The difference between CNs-as-Types and CNs-as-Setoids
(8) $[$ human $]=$ Human: Type (CNs-as-types view)
(9) \quad human $]=\left(\right.$ Human,$\left.={ }_{h}\right)($ CNs-as-Setoids view $)$

CNs as Setoids

- Consider the following examples and their semantic interpretations:
(10) Three men talk.
(11) Three humans talk.
(12) $\exists x, y, z:$ Man. $x \nexists_{M} y \& y \nexists_{M} z \& x \nexists_{M}$ $z \& \operatorname{talk}(x) \& \operatorname{talk}(y) \& t a l k(z)$
(13) $\exists x, y, z: H u m a n . ~ x \neq H$ y \& $y \not \neq H z \& x \neq H$ $z \& \operatorname{talk}(x) \& \operatorname{talk}(y) \& \operatorname{talk}(z)$
where Man $=($ Man,$=M)$ and Human $=($ Human,$=H)$ are setoids and the identity criterion for men and that for humans are used to express that x, y and z are distinct from each other.

CNs as Setoids

- Necessary to consider the individuation criteria explicitly by using the identity criteria $=M$ and $=H$
- The relationship between the Man and Human is one where the first inherits the IC from the second
(14) $\quad\left(={ }_{M}\right)=\left.\left(=_{H}\right)\right|_{M a n}$

CNs as Setoids: Subsetoids

- $\mathrm{A}=\left(A,={ }_{\mathrm{A}}\right)$ is a sub-setoid of $\mathrm{B}=\left(B,={ }_{\mathrm{B}}\right)$, notation $\mathrm{A} \sqsubseteq \mathrm{B}$, iff
- $A \leq B$ and $=_{A}$ is the same as $\left.\left(=_{B}\right)\right|_{A}$ (the restriction of $=_{B}$ over A).
- Some examples:
(15) Man \sqsubseteq Human
(16) $\quad\left(\right.$ RTable,$\left.{ }_{t}\right) \sqsubseteq($ Table,$=t)$ where RTable is: Σx :Table.red (x) is the domain of red tables and $=_{t}$ is the equivalence relation representing the identity criterion for tables

CNs as Setoids: Subsetoids

- In restricted domains like Man or RTable, the identity criteria coincide with those in Human and Table
- For these cases, one can ignore the IC, i.e. one can use the simpler CNs-as-Types approach
- More sophisticated cases like copredication with quantification however need IC
(17) John picked up and mastered three books.
- Double distinctness
(18) John picked up and mastered three books \Rightarrow John picked up three physical objects and mastered three informational objects

CNs as Setoids: Copredication

- Let us split the example into its conjuncts
(19) Three(Book, PHY, pick up(j)).
(20) Three(Book, InFO, master (j)).
- Note: the CN book in 19 refers to a different collection from that referred to by book in 20
(21) Book $_{1}=\left(\right.$ Book, $\left.={ }_{p}\right)$
(22) Book $_{2}=($ Book, $=i)$

CNs as Setoids: Copredication

- How the identity criterion for books is determined
- why do we use $={ }_{p}$ in 19 and $={ }_{i}$ in 20?
\star The verb (and its semantics) that determines the identity criterion of the object CN.
$I C^{N, V} \Rightarrow \begin{cases}={ }_{p} & \text { if } \operatorname{Dom}(\mathrm{V})=\text { Phy } \\ =i_{i} & \text { if } \operatorname{Dom}(\mathrm{V})=\text { InFo } \\ ? ? ? & \text { if } \operatorname{Dom}(\mathrm{V})=\text { PhY } \bullet \text { Info }\end{cases}$
\star In order to deal with the dot-type case, we have to define setoids for dot-types!

CNs as Setoids: Copredication

- Let $\mathrm{A}=\left(A,={ }_{\mathrm{A}}\right)$ and $\mathrm{B}=\left(B,={ }_{\mathrm{B}}\right)$ be setoids. Then, the dot-setoid $A \bullet B$ is defined as follows:
- $\mathrm{A} \bullet \mathrm{B}=\left(A \bullet B,={ }_{\mathrm{A}} \bullet \mathrm{B}\right)$ where $\left\langle a_{1}, b_{1}\right\rangle={ }_{A \bullet B}\left\langle a_{2}, b_{2}\right\rangle$ if, and only if, $\left(a_{1}={ }_{\mathrm{Aa}_{2}}\right) \vee\left(b_{1}={ }_{\mathrm{B}} b_{2}\right)$.

CNs as Setoids: Copredication

- The semantics for three Let A be a type and $\mathrm{B}=\left(B,={ }_{\mathrm{B}}\right)$ a setoid such that $A \leq B$, and $P: B \rightarrow$ Prop a predicate over B :
- Three $(A, B, P)=\exists x, y, z: A$. $D[\mathrm{~B}](x, y, z) \& P(x) \& P(y) \& P(z)$. where $D[\mathrm{~B}](x, y, z)=x \not \neq \mathrm{B} y \& y \not \neq \mathrm{B} z \& x \not \neq \mathrm{B} z$.

CNs as Setoids: Copredication

- With these definitions, the desired semantics of our copredication cases are derived
- Three(Book, PHY • Info, pm(j))
- $\exists x, y, z$: Book. $D[\mathrm{PHY}](x, y, z) \& D[\operatorname{InFo}](x, y, z) \& p m(j, x)$ \& $p m(j, y) \& p m(j, z)$
- Note that this is achieved through defining the equivalence relation for dot-types by means of disjunction of both identity criteria and, then, we obtain double distinctness by negating the disjunction.

CNs as Setoids: Copredication

- Verbs plus adjectives in quantified copredication
- Consider the following example:
(23) John mastered three heavy books.
- The interpretation needed here: John mastered three informational objects that are also heavy as physical objects
* Both the verb and the adjective have a word on the IC
- First step: adjectival modification
- HBook $=\Sigma$ (Book, heavy) or Σx :Book.heavy (x)

CNs as Setoids: Copredication

- The interpretation we get:

Three(HBook, PHY • InFO, master (j))

- Expanding:
$\exists x, y, z$: HBook. $D[\mathrm{PHY}](x, y, z) \& D[\operatorname{INFO}](x, y, z)$
\& master (j, x) \& master $(j, y) \&$ master (j, z)

Conclusions

- MTTs as foundational languages for formal semantics

Conclusions

- MTTs as foundational languages for formal semantics
- Formally, well-studied

Conclusions

- MTTs as foundational languages for formal semantics
- Formally, well-studied
- Expressively adequate
centre for

Conclusions

- MTTs as foundational languages for formal semantics
- Formally, well-studied
- Expressively adequate
- Proof-theoretically specified, supporting effecting reasoning
- State of maturity of both MTT semantics and proof assistant technology
centre for

Conclusions

- MTTs as foundational languages for formal semantics
- Formally, well-studied
- Expressively adequate
- Proof-theoretically specified, supporting effecting reasoning
- State of maturity of both MTT semantics and proof assistant technology
- Use proof assistant technology and MTTs for formal verification and inference

Th．Coquand and G．Huet．
The calculus of constructions．
Information and Computation，76（2／3）， 1988.
图 Z．Luo．
Computation and Reasoning：A Type Theory for Computer Science． Oxford University Press， 1994.

圊 V．Voevodsky．
Experimental library of univalent formalization of mathematics．
Mathematical Structures in Computer Science，25：1278－1294， 2015.
圊 Agda 2008.
The Agda proof assistant（version 2）．
Available from the web page：
http：／／appserv．cs．chalmers．se／users／ulfn／wiki／agda．php， 2008.

夏 Coq 2007.
 and studies in probability
The Coq Team， 2007.

R A. Ranta.
Type-Theoretical Grammar.
Oxford University Press, 1994.
E G. Sundholm.
Constructive generalized quantifiers.
Synthese, 79(1):1-12, 1989.
居 P. Boldini.
Formalizing context in intuitionistic type theory.
Fundamenta Informaticae, 42(2):1-23, 2000.
R R. Cooper.
Records and record types in semantic theory.
J. Logic and Compututation, 15(2), 2005.
R. Dapoigny and P. Barlatier.

Modeling contexts with dependent types.
Fundamenta Informaticae, 21, 2009.
固 D. Bekki.

Representing anaphora with dependent types.
LACL 2014, LNCS 8535, 2014.
圊 C. Retoré.
The montagovian generative lexicon Tyn: a type theoretical framework for natural language semantics.
In R. Matthes and A. Schubert, editors, Proc of TYPES2013, 2013.
(Justyna Grudzinska and Marek W. Zawadowski.
Generalized quantifiers on dependent types: A system for anaphora.
CoRR, abs/1402.0033, 2014.
URL http://arxiv.org/abs/1402.0033.
S. Chatzikyriakidis and Z. Luo.

An account of natural language coordination in type theory with coercive subtyping.
In Y. Parmentier and D. Duchier, editors, Proc. of Constraint Solving
and Language Processing (CSLP12). LNCS 8114, pages 31-51,
Orleans, 2012.
目 Stergios Chatzikyriakidis and Zhaohui Luo.

Adjectival and adverbial modification: The view from modern type theories.
Journal of Logic, Language and Information, 26(1):45-88, 2017a.
圊 S. Chatzikyriakidis and Z. Luo.
On the interpretation of common nouns: Types v.s. predicates.
In S. Chatzikyriakidis and Z. Luo, editors, Modern Perspectives in
Type Theoretical Semantics. Studies of Linguistics and Philosophy,
Springer, 2016 (to appear).
S. Chatzikyriakidis and Z. Luo.

Adjectival and adverbial modification: The view from modern type theories.
Journal of Logic, Language and Information, 2017b.
S. Chatzikyriakidis and Z. Luo.

Adjectives in a modern type-theoretical setting.
In G. Morrill and J.M Nederhof, editors, Proceedings of Formal
Grammar 2013. LNCS 8036, pages 159-174, 2013.
S. Chatzikyriakidis and Z. Luo.

Using signatures in type theory to represent situations. Logic and Engineering of Natural Language Semantics 11. Tokyo, 2014.

目 P.T. Geach.
Reference and Generality: An examination of some Medieval and Modern Theories.
Cornell University Press, 1962.
centre for
linguistic theory
and studies in probability

