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I. The λ-Calculus

The simply typed λ-calculus consists of:

I Types: X ,Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .

I ( Equations s = t : A )

Usually presented as a deductive system by rules of inference like:

a : A b : B
〈a, b〉 : A× B

c : A× B
fst(c) : A (snd(c) : B)

a : A f : A→ B
f (a) : B

x : A ` b(x) : B

λx :A. b(x) : A→ B



Curry-Howard

The system is usually regarded as a calculus for specifying and
evaluating functions, but it also has another interpretation:

I The types are “propositions” and their terms are “proofs”,
which are being derived.

This is known as the Curry-Howard correspondence:

0 1 A + B A× B A→ B
∑

x :A B(x)
∏

x :A B(x)

⊥ T A ∨ B A ∧ B A⇒ B ∃x :AB(x) ∀x :AB(x)

It even extends to predicate logic, and beyond, but we will just be
concerned with the propositional fragment today.



Curry-Howard

I These are indeed very different ideas: the “proof-relevant”
interpretation is modelled by sets and functions, while the
“proof-irrelevant” one is modelled by subsets of a fixed set.

I Under the former, there may be many different terms a : A of
a given type; but under the latter interpretation, one typically
just considers whether a proposition is provable – i.e. has a
proof a : A.



Curry-Howard

Of course, different proofs of a given proposition may correspond
to different terms:

x :A, y :B ` x : A x :A, y :B ` y : B

x :A, y :B ` 〈x , y〉 : A× B

x :A, y :B ` p1〈x , y〉 : A
x :A ` λy :B. p1〈x , y〉 : B→A

` λx :Aλy :B. p1〈x , y〉 : A→(B→A)

x :A, y :B ` x : A

x :A ` λy :B. x : B→A

` λx :Aλy :B. x : A→(B→A)

The Curry-Howard correspondence also gives rise to a connection
between functions and proofs, called the BHK interpretation.



II. Cartesian closed categories

The Curry-Howard correspondence can be understood in terms of
category theory as the recognition that the things being related –
namely, proofs in propositional logic and terms in the lambda
calculus, share a common structure, namely that of being a
cartesian closed category.

Definition
A category C is cartesian closed if it has the following structure:

I a terminal object 1.

I for every pair of objects A,B a product A×B, with projection
maps A← A× B → A,

I for every pair of objects A,B an exponential BA with
evaluation map BA × A // B.

This structure is also had by functions between sets (and similar),
which also helps to “explain” the BHK interpretation.



II. Cartesian closed categories

Examples of CCCs include:

I Sets and functions.

I Boolean algebras, such a powersets P(A), and
Lindenbaum-Tarski algebras of propositional logics.

I More general posets, like the collection of open sets O(X ) of
a topological space X .

I Families of sets (Ai )i∈I indexed over some set I , or even a
poset or category I (“Kripke models”).

The λ-calculus can be shown to be deductively complete with
respect to such semantics, just like the propositional calculus.



III. Modalities

Now we want to consider adding another ingredient to
propositional logic, namely modal operators like �P and �P.

In propositional logic, such operators can of course represent many
different things:

I necessity, possibility

I knowledge, belief

I always, sometimes,

I should, may,

I etc.



III. Modalities

From the many different interpretations, we see that – unlike the
conjunction P ∧ Q and implication P ⇒ Q – the meaning of such
modal operators �P is not “fixed”. In particular, the choice of
rules will be determined by the intended interpretation or range of
interpretations.

For example, whether we have

�P ∧ �Q → �(P ∧ Q)

depends on the interpretation of �: if it’s belief, then this might be
reasonable, but if it’s possibility, then it’s less so.



III. Modal type theory

We want to extend the Curry-Howard correspondence to include
also such modalities:

⊥ T A ∨ B A ∧ B A⇒ B �A �A

0 1 A + B A× B A→ B ?A ?A



III. Modal type theory

I In logic, the modality �P on propositions usually satifies laws
such as

P ⇒ �P, ��P ⇒ �P, (P ⇒ Q)⇒ (�P ⇒ �Q)

I Under Curry-Howard, such a modality is encoded in simple
type theory by rules such as:

Γ ` A type

Γ ` �A type

Γ ` a : A
Γ ` a� : �A

and so on.

I Finding the right type theory is guided semantically by the
concept of a monad T : C // C on a category C, with may
be thought of as the category of types and terms.

I The basic idea goes back to the ground-breaking paper of E.
Moggi, Computational lambda-calculus and monads, 1988.



III. Modal type theory

I Another common logical modality �p satifies the dual laws,

�P ⇒ P, �P ⇒ ��P, (P ⇒ Q)⇒ (�P ⇒ �Q)

I Encoding such a comonadic modality in type theory is more
difficult – especially in dependent type theory. This is the
focus of current research by Zwanziger and others, drawing on
earlier work of Pfenning, Biermann and de Paiva, and others.

I Such a modality is modelled semantically by a comonad
S : C // C on the category of types and terms.



IV. Monads and Comonads

Definition
A monad (T , η, µ) on a category C consists of

I a functor T : C // C,

I a natural transformation η : 1C // T ,

I a natural transformation µ : T 2 // T ,

satisfying equations stating that µ is associative and η is a unit:

µA ◦ µTA = µa ◦ TµA, µA ◦ ηTA = 1TA = µA ◦ TηA .



IV. Monads and Comonads

Examples of monads include:

I possibility �P,

I powerset P(A),

I the list monad X ∗ =
∑

n∈N X n,

I partiality X + 1,



IV. Monads and Comonads

Definition
A comonad (S , ε, δ) on a category C consists of

I a functor S : C // C,

I a natural transformation ε : S // 1C,

I a natural transformation δ : S // S2,

satisfying the monad equations in Cop.



IV. Monads and Comonads

Examples of comonads include:

I necessity �P,

I the discrete space of points |X | of a space X ,

I the discrete category of objects C0 of a category C,

I infinite streams (x0, x1, . . . ) ∈ Xω of elements of a set X .



IV. (Co)Monads as Kleisli (Co)Triples

There is an alternate presentation of the notion of a (co)monad,
which is often more convenient for the purposes of type theory.

Definition
A Kleisli triple (T , η, ∗) on a category C consists of

I an operation C 7→ TC on objects,

I a family of arrows ηC : C → TC ,

I a operation taking each f : A→ TB to an f ∗ : TA→ TB,

satisfying the equations:

(ηA)∗ = 1TA, f ∗ ◦ ηA = f , g∗ ◦ f ∗ = (g∗ ◦ f )∗ .

This specification can be shown to be equivalent to the previous
one.
The dual notion of Kleisli cotriple is as expected.


