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1 Précis

Since it interprets propositions by sets of possible worlds, the intensional logic of Montague (locus classicus 1973)
does not distinguish propositions which are true in the same possible worlds. Because of this, the system does not
satisfactorily interpret propositional attitude verbs, a fact which has motivated the development of ‘hyperintensional’
logics (see Fox and Lappin 2008 for a survey).

Below, I isolate a hyperintensional system, Comonadic Homotopy Type Theory (CHoTT), which naturally
incorporates the intensional logic of Montague with the usual notions of homotopy type theory (see UFP 2013).
This system is a fragment of Shulman (2017). From homotopy type theory, we inherit two notions of equality,
= and =, which we think of as expressing intensional and extensional equalities, respectively. From Montague,
we inherit a syntax for intensional operators, which for us will mean operators which respect intensional but not
(necessarily) extensional equality. These are used to interpret propositional attitude operators. When interpreting
natural language, the intensional equality is chosen to be sufficiently ‘granular’ that the usual issues are avoided.

2 Comonadic Homotopy Type Theory

As intimated, our system of study, CHoTT, combines a version of Montague’s intensional logic with homotopy type
theory. Since CHoTT is a homotopy type theory, it includes two notions of equality: definitional equality, written
=, and thought of as intensional equality, and typal equality, written =, and thought of as extensional equality. Of
course, = is stronger than = in a suitable sense. By integrating Montague, we permit ‘intensional’ operators which
do not respect =.

In condensed terms, CHoOTT is the fragment of Shulman (op. cit.) consisting of the usual notions of homotopy
type theory, together with the comonadic type operator b, which we think of as an intension operator performing the
role of Montague’s (s, —).

This system is now delineated.

Following in the tradition of Pfenning and Davies (2001) (and including Shulman op. cit.), CHoTT has two
variable judgements,

u: A

and
z: A

We will say (at variance with prior terminology) that “u is an intensional variable of type A,” when u :: A and that
“z is an extensional variable of type A,” when = : A. A term in an intensional variable will not be required to respect
extensional equality with respect to that variable (that is, ‘in that argument’).

The hypothetical judgements of CHoTT have the form



A|I'+t:B

and
Al't=u:B

where A represents a list of intensional typed variables, and I" a list of extensional typed variables. This A | I”
is called the context, and we will have, as usual, that a type appearing in the context may depend only on typed
variables to its left. So types in I" can depend on variables in A, but not vice versa.

Due to the two variable judgements, there is a duplication of the rules for context extension and variables, with
variants for extensional and intensional variables. These are given in the figure below.
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Fig. 1. The Extensional (—°) and Intensional (—*) Context Rules

We will import the usual homotopy type theoretical notions (as found in UFP op. cit.), including [ [- and > -
types (corresponding to the quantifiers V and 3), universe polymorphism, =-types, higher inductive types (HITs),
and univalence. However, the typing rules are assumed to manipulate extensional variables only. For instance, the
formation rule for [ | is

A|'+A:U A|INe: A+ B:U
ATEL.B:U

in which x : A is required to be extensional.

Of course, the =-types provide our notion of extensional equality. It is the crucial restriction of the =-rules to
extensional variables that ensures that only terms in extensional variables provably respect =. In particular, exten-
sionally identical terms cannot be distinguished by predicates in extensional variables, but may be distinguished
by predicates in intensional variables. That is, it is a consequence of the restriction of the =-rules to extensional
variables that we have the principle

Alle: A-B:U AT+ s,t: A A|lT'+p:s=at A| T+ q: B[s/x]
AT+ {(s,t,p,q) : B[t/z]

Indiscernibility of Identicals®

in which the variable x of the predicate B is extensional, but not the principle

AuzAl-+B:U Al st A Al - Fp:s=at A+ q: B[s/x]
AT+ L(s,t,p,q) : B[t/z]

Indiscernibility of Identicals’

in which the variable v of the predicate B is intensional.

Finally, we have a comonad b corresponding to Montague’s (s, —). Terms in the intensional variable u :: A will
be interchangeable with terms in the extensional variable z : b A.

We have the following rules:



Al--B:U Al-+t:B
b-Form. ————————————

_ > b-Intro. (Montague’s intension operator ~ (—))
A|T-bB:U A|T'+=t :bB

A|Nz:bDA-B:U Al s:bhA Awu: A|T -t Bl /x]
A|T - (letu :=sint) : B[s/x]

b-Elim.

A|Nz:bA+B:U Al - Fs: A A,u::A|F|—t:B[ub/x]
A|T - letd’ := s int = t[s/u] : B[s"/z]

b-/3-Conversion

Fig.2. The Rules for b

Note that the formation and introduction (intension) rules only apply when no extensional variables are present
(“in an intensional context”). Thus, in a well-typed term, any b(—) or (—)° that appear must have been adduced
during a phase of the derivation with an intensional context.

Though the elimination rule is subtle, the reader may take heart that we can derive from it an ‘extension’ operator
corresponding to Montague’s ~ (—), which (again following Shulman op. cit.) we call (—),. That is, the rule

Al-+B:U A|T'+t:bB
A|T'+t:B

b-Elim.-Simple

is derived by

Al-+-B:U
A|TNz:bB+ B:U

Var.'
b-Elim.

Weakeni
RS A|r-t¢:bB Au:B|IFu:B

A|T+ (letw :=tinu)=t,: B

Furthermore, we have the conversion (tb)b = ¢, familiar from Montague. That is, the principle
Al-+B:U A|l-+t:B
A|T+ ("), =t:B

b-3-Conv.-Simp.

is obtained by the calculation

), =letw” ==t inu (Def’n. of (—);)
=t (b-5-Conv.)

3 Comparison with Shulman (op. cit.)

CHOTT is a fragment of the type theory of Shulman (op. cit.), which includes a further modal operator, . However,
Shulman’s axioms for f are incompatible with our application. In particular, these imply that intensional variables
respect not just =, but also = (that is, that the undesirable principle Indiscernibility of Identicals’ holds). Also, these
axioms imply idempotence of b (that is, bbA ~ bA), which does not hold in the familiar model of Montague (op.
cit.).

It is likely that a natural weakening of the # axioms could avoid these consequences, but this lies beyond the
scope of the current work.

4 Interpreting Propositional Attitude Operators

We will now see how to interpret propositional attitude operators via the example of a belief operator.

If “Jane believes that The Morning Star is a planet,” and, “The Morning Star is the Evening Star,” are both true,
it does not follow that “Jane believes that The Evening Star is a planet.” CHoTT gives a natural interpretation to
these sentences where this inference indeed fails.



Like in Montague, we assume a type E of entities. Technically, this is a HIT which has among its constructors
j,m, e : F interpreting “Jane,” “The Morning Star,” and “The Evening Star” and p : m =g e witnessing the truth
of m =g e, which is, of course, the interpretation of “The Morning Star is the Evening Star.”” We further assume a
term B : E — bU — U interpreting “believes” and a predicate P : E — U interpreting “is a planet.”

This allows us to interpret the sentence, “Jane believes that The Morning Star is a planet,” compositionally as

B(j, P(m)’)
and the sentence, “Jane believes that The Evening Star is a planet,” compositionally as
B(j, P(e)’)

Why does the second not follow from the first? In order to derive the inference, it must be that B(j, P(x)") is a term
in an extensional variable, so that it respects the equality p : m =g e. However, B(j, P (x)b) is ill-typed in this case,
since the intension operator (—)° only applies in intensional contexts.

Note finally that we have implicitly assumed de dicto readings in this section.

5 Future Work

Several issues remain to be addressed.

The model theory of CHoTT is deferred to later work, and will involve the homotopy-theoretic models used for
homotopy type theory. In such a model theory, there may be many propositions besides the interpretations of the
types 1 and 0. However, when a proposition interpreting the type P is true, there will be a ‘path’ or ‘homotopy’ in
the model connecting the interpretations of P and 1.

In its basic use of distinct intensional and extensional equalities, the present work bears a relation to other work
on (hyper)intensional semantics, including the system of Fox and Lappin (2008). The exact relation to Fox and
Lappin is of interest. CHoTT does enjoy several advantages; for instance, it allows multiple terms of type a = b,
which can be thought of as distinct pieces of evidence that a has the same extension as b.

Finally, no interpretation has been suggested for de re propositional attitude sentences. To do so satisfactorily
would likely involve a more elaborate type theory.
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